↓ Skip to main content

In utero therapy for congenital disorders using amniotic fluid stem cells

Overview of attention for article published in Frontiers in Pharmacology, December 2014
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age and source (53rd percentile)

Mentioned by

twitter
2 X users

Readers on

mendeley
99 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
In utero therapy for congenital disorders using amniotic fluid stem cells
Published in
Frontiers in Pharmacology, December 2014
DOI 10.3389/fphar.2014.00270
Pubmed ID
Authors

Durrgah L. Ramachandra, Steven S. W. Shaw, Panicos Shangaris, Stavros Loukogeorgakis, Pascale V. Guillot, Paolo De Coppi, Anna L. David

Abstract

Congenital diseases are responsible for over a third of all pediatric hospital admissions. Advances in prenatal screening and molecular diagnosis have allowed the detection of many life-threatening genetic diseases early in gestation. In utero transplantation (IUT) with stem cells could cure affected fetuses but so far in humans, successful IUT using allogeneic hematopoietic stem cells (HSCs), has been limited to fetuses with severe immunologic defects and more recently IUT with allogeneic mesenchymal stem cell transplantation, has improved phenotype in osteogenesis imperfecta. The options of preemptive treatment of congenital diseases in utero by stem cell or gene therapy changes the perspective of congenital diseases since it may avoid the need for postnatal treatment and reduce future costs. Amniotic fluid stem (AFS) cells have been isolated and characterized in human, mice, rodents, rabbit, and sheep and are a potential source of cells for therapeutic applications in disorders for treatment prenatally or postnatally. Gene transfer to the cells with long-term transgenic protein expression is feasible. Recently, pre-clinical autologous transplantation of transduced cells has been achieved in fetal sheep using minimally invasive ultrasound guided injection techniques. Clinically relevant levels of transgenic protein were expressed in the blood of transplanted lambs for at least 6 months. The cells have also demonstrated the potential of repair in a range of pre-clinical disease models such as neurological disorders, tracheal repair, bladder injury, and diaphragmatic hernia repair in neonates or adults. These results have been encouraging, and bring personalized tissue engineering for prenatal treatment of genetic disorders closer to the clinic.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 99 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 1%
Unknown 98 99%

Demographic breakdown

Readers by professional status Count As %
Student > Master 21 21%
Student > Ph. D. Student 15 15%
Researcher 13 13%
Student > Bachelor 9 9%
Student > Doctoral Student 6 6%
Other 13 13%
Unknown 22 22%
Readers by discipline Count As %
Medicine and Dentistry 33 33%
Biochemistry, Genetics and Molecular Biology 16 16%
Agricultural and Biological Sciences 8 8%
Nursing and Health Professions 4 4%
Materials Science 2 2%
Other 11 11%
Unknown 25 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 January 2021.
All research outputs
#17,734,890
of 22,774,233 outputs
Outputs from Frontiers in Pharmacology
#7,023
of 16,011 outputs
Outputs of similar age
#241,968
of 353,125 outputs
Outputs of similar age from Frontiers in Pharmacology
#27
of 62 outputs
Altmetric has tracked 22,774,233 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 16,011 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 48th percentile – i.e., 48% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 353,125 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 62 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.