↓ Skip to main content

Phosphoinositide 3-kinase: friend and foe in cardiovascular disease

Overview of attention for article published in Frontiers in Pharmacology, August 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (61st percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
58 Dimensions

Readers on

mendeley
65 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Phosphoinositide 3-kinase: friend and foe in cardiovascular disease
Published in
Frontiers in Pharmacology, August 2015
DOI 10.3389/fphar.2015.00169
Pubmed ID
Authors

Alessandra Ghigo, Mingchuan Li

Abstract

Class I phosphoinositide 3-kinases (PI3Ks) are a family of lipid kinases activated by cell membrane receptors, either receptor tyrosine kinases (RTKs) or G protein-coupled receptors (GPCRs), to catalyze the production of the lipid second messenger phosphatidylinositol (3,4,5)-trisphosphate (PIP3). These enzymes engage multiple downstream intracellular signaling pathways controlling cell proliferation, survival and migration. In the cardiovascular system, the four class I PI3K isoforms, PI3Kα, PI3Kβ, PI3Kδ, and PI3Kγ are differentially expressed in distinct cell subsets which include cardiomyocytes, fibroblasts, endothelial, and vascular smooth muscle cells as well as leukocytes, suggesting specific functions for distinct PI3K isoenzymes. During the last decades, genetic disruption studies targeting different PI3K genes have elucidated the contribution of specific isoenzymes to cardiac and vascular function regulation, highlighting both beneficial and maladaptive roles. New layers of complexity in the function of PI3Ks have recently emerged, indicating that distinct PI3K isoforms are interconnected by various crosstalk events and can function not only as kinases, but also as scaffold proteins coordinating key signalosomes in cardiovascular health and disease. In this review, we will summarize major breakthroughs in the comprehension of detrimental and beneficial actions of PI3K signaling in cardiovascular homeostasis, and we will discuss recently unraveled cross-talk and scaffold mechanisms as well as the role of the less characterized class II and III PI3K isoforms.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 65 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 65 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 18%
Researcher 11 17%
Student > Bachelor 7 11%
Student > Master 7 11%
Student > Doctoral Student 5 8%
Other 9 14%
Unknown 14 22%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 18 28%
Medicine and Dentistry 10 15%
Agricultural and Biological Sciences 10 15%
Pharmacology, Toxicology and Pharmaceutical Science 5 8%
Immunology and Microbiology 1 2%
Other 1 2%
Unknown 20 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 August 2015.
All research outputs
#14,234,315
of 22,821,814 outputs
Outputs from Frontiers in Pharmacology
#4,667
of 16,054 outputs
Outputs of similar age
#136,414
of 264,389 outputs
Outputs of similar age from Frontiers in Pharmacology
#27
of 76 outputs
Altmetric has tracked 22,821,814 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 16,054 research outputs from this source. They receive a mean Attention Score of 4.9. This one has gotten more attention than average, scoring higher than 68% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,389 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 76 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 61% of its contemporaries.