↓ Skip to main content

Chronic Stress Is Associated with Pain Precipitation and Elevation in DeltaFosb Expression

Overview of attention for article published in Frontiers in Pharmacology, May 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
34 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Chronic Stress Is Associated with Pain Precipitation and Elevation in DeltaFosb Expression
Published in
Frontiers in Pharmacology, May 2016
DOI 10.3389/fphar.2016.00138
Pubmed ID
Authors

Hang Wang, Xinrong Tao, Si-Ting Huang, Liang Wu, Hui-Li Tang, Ying Song, Gongliang Zhang, Yong-Mei Zhang

Abstract

A number of acute or repeated stimuli can induce expression of DeltaFosB (ΔFosB), a transcription factor derived from the fosB gene (an osteosarcoma viral oncogene) via alternative splicing. ΔFosB protein is currently viewed as a 'molecular switch' to repeated stimuli that gradually converts acute responses into relatively stable adaptations underlying long-term neural and behavioral plasticity. ΔFosB has received extensive attention in drug addition, depression, and stress adaptation, but changes in ΔFosB protein expression during pain is not fully understood. In this study we explored ΔFosB expression in the medial prefrontal cortex (mPFC) of rats experiencing chronic or acute stress-induced pain. Our data reveal that chronic pain induced by neonatal colorectal distension, chronic constriction injury (CCI) of the sciatic nerve, or maternal separation was associated with an increase in ΔfosB protein expression in mPFC, but acute application of acetic acid or zymosan did not alter the ΔFosB protein expression. ΔFosB expression in the rat visual cortex, a non pain-related brain region, did not change in response to (CCI) of the sciatic nerve and acetic acid treatment. In conclusion, our results indicate that ΔFosB protein expression is significantly elevated in rats that have experienced chronic pain and stress, but not acute pain. The ΔFosB protein may serve as an important transcription factor for chronic stress-induced pain. Further research is needed to improve the understanding of both the upstream signaling leading to ΔFosB protein expression as well as the regulation of ΔFosB gene expression in cortical neurons.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 34 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 34 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 8 24%
Student > Ph. D. Student 6 18%
Student > Bachelor 4 12%
Researcher 3 9%
Student > Doctoral Student 2 6%
Other 2 6%
Unknown 9 26%
Readers by discipline Count As %
Neuroscience 10 29%
Medicine and Dentistry 4 12%
Agricultural and Biological Sciences 3 9%
Social Sciences 2 6%
Nursing and Health Professions 1 3%
Other 3 9%
Unknown 11 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 May 2016.
All research outputs
#20,330,976
of 22,875,477 outputs
Outputs from Frontiers in Pharmacology
#10,111
of 16,163 outputs
Outputs of similar age
#291,271
of 338,744 outputs
Outputs of similar age from Frontiers in Pharmacology
#72
of 113 outputs
Altmetric has tracked 22,875,477 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 16,163 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 338,744 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 113 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.