↓ Skip to main content

An Exploration of Charge Compensating Ion Channels across the Phagocytic Vacuole of Neutrophils

Overview of attention for article published in Frontiers in Pharmacology, February 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (52nd percentile)
  • Good Attention Score compared to outputs of the same age and source (72nd percentile)

Mentioned by

twitter
6 X users

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
32 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
An Exploration of Charge Compensating Ion Channels across the Phagocytic Vacuole of Neutrophils
Published in
Frontiers in Pharmacology, February 2017
DOI 10.3389/fphar.2017.00094
Pubmed ID
Authors

Juliet R Foote, Philippe Behe, Mathew Frampton, Adam P Levine, Anthony W Segal

Abstract

Neutrophils phagocytosing bacteria and fungi exhibit a burst of non-mitochondrial respiration that is required to kill and digest the engulfed microbes. This respiration is accomplished by the movement of electrons across the wall of the phagocytic vacuole by the neutrophil NADPH oxidase, NOX2. In this study, we have attempted to identify the non-proton ion channels or transporters involved in charge compensation by examining the effect of inhibitors on vacuolar pH and cross-sectional area, and on oxygen consumption. The chloride channel inhibitors 4-[(2-Butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-inden-5-yl)oxy]butanoic acid (DCPIB) and flufenamic acid (FFA) were the most effective inhibitors of alkalinisation in human neutrophil vacuoles, suggesting an efflux of chloride from the vacuole. The proton channel inhibitor, zinc (Zn(2+)), combined with DCPIB caused more vacuolar swelling than either compound alone, suggesting the conductance of osmotically active cations into the vacuole. Support for cation influx was provided by the broad-spectrum cation transport inhibitors anandamide and quinidine which inhibited vacuolar alkalinisation and swelling when applied with zinc. Oxygen consumption was generally unaffected by these anion or cation inhibitors alone, but when combined with Zn(2+) it was dramatically reduced, suggesting that multiple channels in combination can compensate the charge. In an attempt to identify specific channels, we tested neutrophils from knock-out mouse models including CLIC1, ClC3, ClC4, ClC7, KCC3, KCNQ1, KCNE3, KCNJ15, TRPC1/3/5/6, TRPA1/TRPV1, TRPM2, and TRPV2, and double knockouts of CLIC1, ClC3, KCC3, TRPM2, and KCNQ1 with HVCN1, and humans with channelopathies involving BEST1, ClC7, CFTR, and MCOLN1. No gross abnormalities in vacuolar pH or area were found in any of these cells suggesting that we had not tested the correct channel, or that there is redundancy in the system. The respiratory burst was suppressed in the KCC3(-/-) and enhanced in the CLIC1(-/-) cells, but was normal in all others, including ClC3(-/-). These results suggest charge compensation by a chloride conductance out of the vacuole and by cation/s into it. The identity of these channels remains to be established.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Canada 1 3%
Unknown 31 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 28%
Researcher 5 16%
Student > Doctoral Student 3 9%
Student > Bachelor 3 9%
Student > Postgraduate 2 6%
Other 6 19%
Unknown 4 13%
Readers by discipline Count As %
Immunology and Microbiology 7 22%
Biochemistry, Genetics and Molecular Biology 6 19%
Medicine and Dentistry 6 19%
Agricultural and Biological Sciences 4 13%
Neuroscience 2 6%
Other 2 6%
Unknown 5 16%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 September 2017.
All research outputs
#12,735,344
of 22,958,253 outputs
Outputs from Frontiers in Pharmacology
#3,425
of 16,230 outputs
Outputs of similar age
#147,363
of 310,855 outputs
Outputs of similar age from Frontiers in Pharmacology
#51
of 195 outputs
Altmetric has tracked 22,958,253 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 16,230 research outputs from this source. They receive a mean Attention Score of 5.0. This one has done well, scoring higher than 78% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 310,855 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.
We're also able to compare this research output to 195 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.