↓ Skip to main content

Oriental Medicine Samhwangsasim-tang Alleviates Experimental Autoimmune Encephalomyelitis by Suppressing Th1 Cell Responses and Upregulating Treg Cell Responses

Overview of attention for article published in Frontiers in Pharmacology, April 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (59th percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
21 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Oriental Medicine Samhwangsasim-tang Alleviates Experimental Autoimmune Encephalomyelitis by Suppressing Th1 Cell Responses and Upregulating Treg Cell Responses
Published in
Frontiers in Pharmacology, April 2017
DOI 10.3389/fphar.2017.00192
Pubmed ID
Authors

Min J. Lee, Jong H. Choi, Sung J. Lee, Ik-Hyun Cho

Abstract

Oriental medicine Samhwangsasim-tang (SHSST) has traditionally been used in East Asia to treat hypertension and its complications. However, little is known about its potential value regarding the treatment of chronic inflammatory diseases such as multiple sclerosis (MS). In this study, we investigated whether SHSST has a beneficial effect in treating myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis (EAE). Onset-treatment with SHSST was found to alleviate neurological symptoms as well as demyelination and glial activation in the spinal cords from the EAE mice. The SHSST also attenuated the mRNA or protein expression of pro-inflammatory cytokines (interleukin-1beta and tumor necrotic factor-alpha); chemokines (RANTES, monocyte chemotactic protein-1, and macrophage inflammatory protein-1alpha); inducible nitric oxide synthase; and cyclooxygenase-2 in correspondence with the down-regulation of the nuclear factor-kappa B and mitogen-activated protein kinases signal pathways in the spinal cords from EAE mice. Interestingly, the protective effect of the SHSST was related to a decreased number of Th1 cells and an increased number of Treg cells in spinal cords from EAE mice. Taken together, our finding firstly suggested that SHSST could delay or mitigate EAE with a wide therapeutic time-window by suppressing Th1 cell responses and upregulating Treg cell responses. Also, our findings are strong enough to warrant further investigation of SHSST as a treatment for chronic autoimmune diseases including MS.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 21 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 29%
Professor 2 10%
Researcher 2 10%
Student > Doctoral Student 1 5%
Unknown 10 48%
Readers by discipline Count As %
Medicine and Dentistry 4 19%
Neuroscience 2 10%
Veterinary Science and Veterinary Medicine 1 5%
Immunology and Microbiology 1 5%
Biochemistry, Genetics and Molecular Biology 1 5%
Other 2 10%
Unknown 10 48%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 May 2017.
All research outputs
#14,929,731
of 22,963,381 outputs
Outputs from Frontiers in Pharmacology
#5,254
of 16,235 outputs
Outputs of similar age
#184,240
of 310,294 outputs
Outputs of similar age from Frontiers in Pharmacology
#72
of 221 outputs
Altmetric has tracked 22,963,381 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 16,235 research outputs from this source. They receive a mean Attention Score of 5.0. This one has gotten more attention than average, scoring higher than 60% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 310,294 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 221 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 59% of its contemporaries.