↓ Skip to main content

Searching Novel Therapeutic Targets for Scleroderma: P2X7-Receptor Is Up-regulated and Promotes a Fibrogenic Phenotype in Systemic Sclerosis Fibroblasts

Overview of attention for article published in Frontiers in Pharmacology, September 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
31 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Searching Novel Therapeutic Targets for Scleroderma: P2X7-Receptor Is Up-regulated and Promotes a Fibrogenic Phenotype in Systemic Sclerosis Fibroblasts
Published in
Frontiers in Pharmacology, September 2017
DOI 10.3389/fphar.2017.00638
Pubmed ID
Authors

Daniela Gentile, Pietro E. Lazzerini, Alessandra Gamberucci, Mariarita Natale, Enrico Selvi, Francesca Vanni, Alessandra Alì, Paolo Taddeucci, Silvia Del-Ry, Manuela Cabiati, Veronica Della-Latta, David J. Abraham, Maria A. Morales, Rosella Fulceri, Franco Laghi-Pasini, Pier L. Capecchi

Abstract

Objectives: Systemic sclerosis (SSc) is a connective tissue disorder presenting fibrosis of the skin and internal organs, for which no effective treatments are currently available. Increasing evidence indicates that the P2X7 receptor (P2X7R), a nucleotide-gated ionotropic channel primarily involved in the inflammatory response, may also have a key role in the development of tissue fibrosis in different body districts. This study was aimed at investigating P2X7R expression and function in promoting a fibrogenic phenotype in dermal fibroblasts from SSc patients, also analyzing putative underlying mechanistic pathways. Methods: Fibroblasts were isolated by skin biopsy from 9 SSc patients and 8 healthy controls. P2X7R expression, and function (cytosolic free Ca(2+) fluxes, α-smooth muscle actin [α-SMA] expression, cell migration, and collagen release) were studied. Moreover, the role of cytokine (interleukin-1β, interleukin-6) and connective tissue growth factor (CTGF) production, and extracellular signal-regulated kinases (ERK) activation in mediating P2X7R-dependent pro-fibrotic effects in SSc fibroblasts was evaluated. Results: P2X7R expression and Ca(2+) permeability induced by the selective P2X7R agonist 2'-3'-O-(4-benzoylbenzoyl)ATP (BzATP) were markedly higher in SSc than control fibroblasts. Moreover, increased αSMA expression, cell migration, CTGF, and collagen release were observed in lipopolysaccharides-primed SSc fibroblasts after BzATP stimulation. While P2X7-induced cytokine changes did not affect collagen production, it was completely abrogated by inhibition of the ERK pathway. Conclusion: In SSc fibroblasts, P2X7R is overexpressed and its stimulation induces Ca(2+)-signaling activation and a fibrogenic phenotype characterized by increased migration and collagen production. These data point to the P2X7R as a potential, novel therapeutic target for controlling exaggerated collagen deposition and tissue fibrosis in patients with SSc.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 31 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 31 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 23%
Student > Ph. D. Student 4 13%
Student > Bachelor 3 10%
Student > Postgraduate 3 10%
Student > Doctoral Student 2 6%
Other 4 13%
Unknown 8 26%
Readers by discipline Count As %
Medicine and Dentistry 5 16%
Biochemistry, Genetics and Molecular Biology 5 16%
Agricultural and Biological Sciences 3 10%
Pharmacology, Toxicology and Pharmaceutical Science 2 6%
Immunology and Microbiology 2 6%
Other 4 13%
Unknown 10 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 September 2017.
All research outputs
#20,447,499
of 23,002,898 outputs
Outputs from Frontiers in Pharmacology
#10,206
of 16,309 outputs
Outputs of similar age
#276,277
of 316,290 outputs
Outputs of similar age from Frontiers in Pharmacology
#158
of 264 outputs
Altmetric has tracked 23,002,898 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 16,309 research outputs from this source. They receive a mean Attention Score of 5.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 316,290 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 264 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.