↓ Skip to main content

The Molecular Determinants of Small-Molecule Ligand Binding at P2X Receptors

Overview of attention for article published in Frontiers in Pharmacology, February 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
34 Dimensions

Readers on

mendeley
52 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The Molecular Determinants of Small-Molecule Ligand Binding at P2X Receptors
Published in
Frontiers in Pharmacology, February 2018
DOI 10.3389/fphar.2018.00058
Pubmed ID
Authors

Gaia Pasqualetto, Andrea Brancale, Mark T. Young

Abstract

P2X receptors are trimeric eukaryotic ATP-gated cation channels. Extracellular ATP-their physiological ligand-is released as a neurotransmitter and in conditions of cell damage such as inflammation, and substantial evidence implicates P2X receptors in diseases including neuropathic pain, cancer, and arthritis. In 2009, the first P2X crystal structure,Danio rerioP2X4 in theapo- state, was published, and this was followed in 2012 by the ATP-bound structure. These structures transformed our understanding of the conformational changes induced by ATP binding and the mechanism of ligand specificity, and enabled homology modeling of mammalian P2X receptors for ligand docking and rational design of receptor modulators. P2X receptors are attractive drug targets, and a wide array of potent, subtype-selective modulators (mostly antagonists) have been developed. In 2016, crystal structures of human P2X3 in complex with the competitive antagonists TNP-ATP and A-317491, andAiluropoda melanoleucaP2X7 in complex with a series of allosteric antagonists were published, giving fascinating insights into the mechanism of channel antagonism. In this article we not only summarize current understanding of small-molecule modulator binding at P2X receptors, but also use this information in combination with previously published structure-function data and molecular docking experiments, to hypothesize a role for the dorsal fin loop region in differential ATP potency, and describe novel, testable binding conformations for both the semi-selective synthetic P2X7 agonist 2'-(3')-O-(4-benzoyl)benzoyl ATP (BzATP), and the P2X4-selective positive allosteric modulator ivermectin. We find that the distal benzoyl group of BzATP lies in close proximity to Lys-127, a residue previously implicated in BzATP binding to P2X7, potentially explaining the increased potency of BzATP at rat P2X7 receptors. We also present molecular docking of ivermectin to rat P2X4 receptors, illustrating a plausible binding conformation between the first and second transmembrane domains which not only tallies with previous mutagenesis studies, but would also likely have the effect of stabilizing the open channel structure, consistent with the mode of action of this positive allosteric modulator. From our docking simulations and analysis of sequence homology we propose a series of mutations likely to confer ivermectin sensitivity to human P2X1.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 52 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 52 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 19%
Researcher 9 17%
Other 6 12%
Student > Bachelor 6 12%
Student > Master 4 8%
Other 7 13%
Unknown 10 19%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 14 27%
Medicine and Dentistry 6 12%
Pharmacology, Toxicology and Pharmaceutical Science 5 10%
Agricultural and Biological Sciences 3 6%
Immunology and Microbiology 3 6%
Other 8 15%
Unknown 13 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 February 2018.
All research outputs
#20,462,806
of 23,020,670 outputs
Outputs from Frontiers in Pharmacology
#10,233
of 16,332 outputs
Outputs of similar age
#377,032
of 439,370 outputs
Outputs of similar age from Frontiers in Pharmacology
#181
of 293 outputs
Altmetric has tracked 23,020,670 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 16,332 research outputs from this source. They receive a mean Attention Score of 5.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 439,370 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 293 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.