↓ Skip to main content

Inhibition of Protein Glycation by Tiger Milk Mushroom [Lignosus rhinocerus (Cooke) Ryvarden] and Search for Potential Anti-diabetic Activity-Related Metabolic Pathways by Genomic and Transcriptomic…

Overview of attention for article published in Frontiers in Pharmacology, February 2018
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age and source (52nd percentile)

Mentioned by

twitter
2 X users
video
1 YouTube creator

Citations

dimensions_citation
25 Dimensions

Readers on

mendeley
55 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Inhibition of Protein Glycation by Tiger Milk Mushroom [Lignosus rhinocerus (Cooke) Ryvarden] and Search for Potential Anti-diabetic Activity-Related Metabolic Pathways by Genomic and Transcriptomic Data Mining
Published in
Frontiers in Pharmacology, February 2018
DOI 10.3389/fphar.2018.00103
Pubmed ID
Authors

Hui-Yeng Y. Yap, Nget-Hong Tan, Szu-Ting Ng, Chon-Seng Tan, Shin-Yee Fung

Abstract

Naturally occurring anti-glycation compounds have drawn much interest in recent years as they show potential in reducing or preventing the risk of chronic complications for diabetic patients. In this study, annotation of the genome-transcriptome data from tiger milk mushroom (Lignosus rhinocerus, syn.Lignosus rhinocerotis) to PlantCyc enzymes database identified transcripts that are related to anti-diabetic properties, and these include genes that are involved in carotenoid and abscisic acid biosynthesis as well as genes that code for glyoxalase I, catalase-peroxidases, and superoxide dismutases. The existence of these genes suggests thatL. rhinocerusmay contain bioactive compound(s) with anti-glycation properties that can be exploited for management of diabetic complications. A medium-molecular-weight (MMW) fraction which was obtained from a combination of cold water extraction and Sephadex®G-50 (fine) gel filtration chromatography ofL. rhinocerussclerotia powder was demonstrated to exhibit potent anti-glycation activity. The fraction specifically inhibited the formation of N𝜀-(carboxymethyl)lysine, pentosidine, and other advanced glycation end-product (AGE) structures in a human serum albumin-glucose system, with an IC50value of 0.001 mg/ml, almost 520 times lower than that of the positive control, aminoguanidine hydrochloride (IC50= 0.52 mg/ml). Its ability to suppress protein glycation may be partly associated with its strong superoxide anion radical scavenging activity (10.16 ± 0.12 mmol TE/g). Our results suggest that the MMW fraction ofL. rhinocerusshows potential to be developed into a potent glycation inhibitor for preventing AGE-mediated diabetic complications.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 55 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 55 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 8 15%
Student > Ph. D. Student 5 9%
Student > Master 5 9%
Researcher 3 5%
Student > Doctoral Student 2 4%
Other 5 9%
Unknown 27 49%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 11 20%
Pharmacology, Toxicology and Pharmaceutical Science 3 5%
Chemical Engineering 2 4%
Nursing and Health Professions 2 4%
Computer Science 2 4%
Other 6 11%
Unknown 29 53%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 April 2023.
All research outputs
#15,871,532
of 23,578,176 outputs
Outputs from Frontiers in Pharmacology
#6,835
of 17,200 outputs
Outputs of similar age
#277,231
of 448,585 outputs
Outputs of similar age from Frontiers in Pharmacology
#141
of 319 outputs
Altmetric has tracked 23,578,176 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 17,200 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.0. This one has gotten more attention than average, scoring higher than 56% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 448,585 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 29th percentile – i.e., 29% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 319 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.