↓ Skip to main content

TRPC5-eNOS Axis Negatively Regulates ATP-Induced Cardiomyocyte Hypertrophy

Overview of attention for article published in Frontiers in Pharmacology, May 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
26 Dimensions

Readers on

mendeley
24 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
TRPC5-eNOS Axis Negatively Regulates ATP-Induced Cardiomyocyte Hypertrophy
Published in
Frontiers in Pharmacology, May 2018
DOI 10.3389/fphar.2018.00523
Pubmed ID
Authors

Caroline Sunggip, Kakeru Shimoda, Sayaka Oda, Tomohiro Tanaka, Kazuhiro Nishiyama, Supachoke Mangmool, Akiyuki Nishimura, Takuro Numaga-Tomita, Motohiro Nishida

Abstract

Cardiac hypertrophy, induced by neurohumoral factors, including angiotensin II and endothelin-1, is a major predisposing factor for heart failure. These ligands can induce hypertrophic growth of neonatal rat cardiomyocytes (NRCMs) mainly through Ca2+-dependent calcineurin/nuclear factor of activated T cell (NFAT) signaling pathways activated by diacylglycerol-activated transient receptor potential canonical 3 and 6 (TRPC3/6) heteromultimer channels. Although extracellular nucleotide, adenosine 5'-triphosphate (ATP), is also known as most potent Ca2+-mobilizing ligand that acts on purinergic receptors, ATP never induces cardiomyocyte hypertrophy. Here we show that ATP-induced production of nitric oxide (NO) negatively regulates hypertrophic signaling mediated by TRPC3/6 channels in NRCMs. Pharmacological inhibition of NO synthase (NOS) potentiated ATP-induced increases in NFAT activity, protein synthesis, and transcriptional activity of brain natriuretic peptide. ATP significantly increased NO production and protein kinase G (PKG) activity compared to angiotensin II and endothelin-1. We found that ATP-induced Ca2+ signaling requires inositol 1,4,5-trisphosphate (IP3) receptor activation. Interestingly, inhibition of TRPC5, but not TRPC6 attenuated ATP-induced activation of Ca2+/NFAT-dependent signaling. As inhibition of TRPC5 attenuates ATP-stimulated NOS activation, these results suggest that NO-cGMP-PKG axis activated by IP3-mediated TRPC5 channels underlies negative regulation of TRPC3/6-dependent hypertrophic signaling induced by ATP stimulation.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 24 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 33%
Professor > Associate Professor 3 13%
Student > Ph. D. Student 2 8%
Lecturer 2 8%
Student > Master 2 8%
Other 1 4%
Unknown 6 25%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 9 38%
Agricultural and Biological Sciences 4 17%
Medicine and Dentistry 4 17%
Unknown 7 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 31 May 2018.
All research outputs
#20,516,195
of 23,083,773 outputs
Outputs from Frontiers in Pharmacology
#10,307
of 16,429 outputs
Outputs of similar age
#289,773
of 330,117 outputs
Outputs of similar age from Frontiers in Pharmacology
#240
of 401 outputs
Altmetric has tracked 23,083,773 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 16,429 research outputs from this source. They receive a mean Attention Score of 5.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,117 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 401 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.