↓ Skip to main content

Potential Applications of Nanotechnology in Urological Cancer

Overview of attention for article published in Frontiers in Pharmacology, July 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
23 Dimensions

Readers on

mendeley
55 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Potential Applications of Nanotechnology in Urological Cancer
Published in
Frontiers in Pharmacology, July 2018
DOI 10.3389/fphar.2018.00745
Pubmed ID
Authors

Ming-Hui He, Li Chen, Ting Zheng, Yu Tu, Qian He, Hua-Lin Fu, Ju-Chun Lin, Wei Zhang, Gang Shu, Lili He, Zhi-Xiang Yuan

Abstract

Nowadays, the potential scope of nanotechnology in uro-oncology (cancers of the prostate, bladder, and kidney) is broad, ranging from drug delivery, prevention, and diagnosis to treatment. Novel drug delivery methods using magnetic nanoparticles, gold nanoparticles, and polymeric nanoparticles have been investigated in prostate cancer. Additionally, renal cancer treatment may be profoundly influenced by applications of nanotechnology principles. Various nanoparticle-based strategies for kidney cancer therapy have been proposed. Partly due to the dilution of drug concentrations by urine production, causing inadequate drug delivery to tumor cells in the treatment of bladder cancer, various multifunctional bladder-targeted nanoparticles have been developed to enhance therapeutic efficiency. In each of these cancer research fields, nanotechnology has shown several advantages over widely used traditional methods. Different types of nanoparticles improve the solubility of poorly soluble drugs, and multifunctional nanoparticles have good specificity toward prostate, renal, and bladder cancer. Moreover, nanotechnology can also combine with other novel technologies to further enhance effectivity. As our understanding of nanotechnologies grows, additional opportunities to improve the diagnosis and treatment of urological cancer are excepted to arise. In this review, we focus on nanotechnologies with potential applications in urological cancer therapy and highlight clinical areas that would benefit from nanoparticle therapy.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 55 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 55 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 18%
Student > Bachelor 7 13%
Student > Master 6 11%
Other 5 9%
Researcher 4 7%
Other 7 13%
Unknown 16 29%
Readers by discipline Count As %
Pharmacology, Toxicology and Pharmaceutical Science 7 13%
Chemistry 6 11%
Engineering 6 11%
Medicine and Dentistry 5 9%
Agricultural and Biological Sciences 3 5%
Other 11 20%
Unknown 17 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 June 2021.
All research outputs
#18,643,992
of 23,096,849 outputs
Outputs from Frontiers in Pharmacology
#8,450
of 16,456 outputs
Outputs of similar age
#252,184
of 326,642 outputs
Outputs of similar age from Frontiers in Pharmacology
#196
of 398 outputs
Altmetric has tracked 23,096,849 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 16,456 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.0. This one is in the 37th percentile – i.e., 37% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,642 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 398 others from the same source and published within six weeks on either side of this one. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.