↓ Skip to main content

Applications of Proteomics to Osteoarthritis, a Musculoskeletal Disease Characterized by Aging

Overview of attention for article published in Frontiers in Physiology, January 2011
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
47 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Applications of Proteomics to Osteoarthritis, a Musculoskeletal Disease Characterized by Aging
Published in
Frontiers in Physiology, January 2011
DOI 10.3389/fphys.2011.00108
Pubmed ID
Authors

Ali Mobasheri

Abstract

The incidence of age-related musculoskeletal impairment is steadily rising throughout the world. Musculoskeletal conditions are closely linked with aging and inflammation. They are leading causes of morbidity and disability in man and beast. Aging is a major contributor to musculoskeletal degeneration and the development of osteoarthritis (OA). OA is a degenerative disease that involves structural changes to joint tissues including synovial inflammation, catabolic destruction of articular cartilage and alterations in subchondral bone. Cartilage degradation and structural changes in subchondral bone result in the production of fragments of extracellular matrix molecules. Some of these biochemical markers or "biomarkers" can be detected in blood, serum, synovial fluid, and urine and may be useful markers of disease progression. The ability to detect biomarkers of cartilage degradation in body fluids may enable clinicians to diagnose sub-clinical OA as well as determining the course of disease progression. New biomarkers that indicate early responses of the joint cartilage to degeneration will be useful in detecting early, pre-radiographic changes. Systems biology is increasingly applied in basic cartilage biology and OA research. Proteomic techniques have the potential to improve our understanding of OA physiopathology and its underlying mechanisms. Proteomics can also facilitate the discovery of disease-specific biomarkers and help identify new therapeutic targets. Proteomic studies of cartilage and other joint tissues may be particularly relevant in diagnostic orthopedics and therapeutic research. This perspective article discusses the relevance and potential of proteomics for studying age-related musculoskeletal diseases such as OA and reviews the contributions of key investigators in the field.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 47 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 2 4%
Italy 1 2%
Denmark 1 2%
Spain 1 2%
United States 1 2%
Unknown 41 87%

Demographic breakdown

Readers by professional status Count As %
Researcher 11 23%
Student > Ph. D. Student 10 21%
Professor 5 11%
Student > Bachelor 4 9%
Student > Doctoral Student 2 4%
Other 7 15%
Unknown 8 17%
Readers by discipline Count As %
Agricultural and Biological Sciences 14 30%
Medicine and Dentistry 12 26%
Biochemistry, Genetics and Molecular Biology 5 11%
Nursing and Health Professions 2 4%
Immunology and Microbiology 1 2%
Other 2 4%
Unknown 11 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 December 2011.
All research outputs
#20,165,369
of 22,675,759 outputs
Outputs from Frontiers in Physiology
#9,270
of 13,467 outputs
Outputs of similar age
#169,848
of 180,328 outputs
Outputs of similar age from Frontiers in Physiology
#34
of 47 outputs
Altmetric has tracked 22,675,759 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,467 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.5. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 180,328 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 47 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.