↓ Skip to main content

Determinants of myocardial conduction velocity: implications for arrhythmogenesis

Overview of attention for article published in Frontiers in Physiology, January 2013
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
170 Dimensions

Readers on

mendeley
236 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Determinants of myocardial conduction velocity: implications for arrhythmogenesis
Published in
Frontiers in Physiology, January 2013
DOI 10.3389/fphys.2013.00154
Pubmed ID
Authors

James H. King, Christopher L.-H. Huang, James A. Fraser

Abstract

Slowed myocardial conduction velocity (θ) is associated with an increased risk of re-entrant excitation, predisposing to cardiac arrhythmia. θ is determined by the ion channel and physical properties of cardiac myocytes and by their interconnections. Thus, θ is closely related to the maximum rate of action potential (AP) depolarization [(dV/dt)max], as determined by the fast Na(+) current (I Na); the axial resistance (r a) to local circuit current flow between cells; their membrane capacitances (c m); and to the geometrical relationship between successive myocytes within cardiac tissue. These determinants are altered by a wide range of pathophysiological conditions. Firstly, I Na is reduced by the impaired Na(+) channel function that arises clinically during heart failure, ischemia, tachycardia, and following treatment with class I antiarrhythmic drugs. Such reductions also arise as a consequence of mutations in SCN5A such as those occurring in Lenègre disease, Brugada syndrome (BrS), sick sinus syndrome, and atrial fibrillation (AF). Secondly, r a, may be increased due to gap junction decoupling following ischemia, ventricular hypertrophy, and heart failure, or as a result of mutations in CJA5 found in idiopathic AF and atrial standstill. Finally, either r a or c m could potentially be altered by fibrotic change through the resultant decoupling of myocyte-myocyte connections and coupling of myocytes with fibroblasts. Such changes are observed in myocardial infarction and cardiomyopathy or following mutations in MHC403 and SCN5A resulting in hypertrophic cardiomyopathy (HCM) or Lenègre disease, respectively. This review defines and quantifies the determinants of θ and summarizes experimental evidence that links changes in these determinants with reduced myocardial θ and arrhythmogenesis. It thereby identifies the diverse pathophysiological conditions in which abnormal θ may contribute to arrhythmia.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 236 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 <1%
United States 1 <1%
Switzerland 1 <1%
Unknown 233 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 46 19%
Researcher 35 15%
Student > Master 27 11%
Student > Bachelor 27 11%
Student > Doctoral Student 23 10%
Other 34 14%
Unknown 44 19%
Readers by discipline Count As %
Medicine and Dentistry 66 28%
Engineering 36 15%
Agricultural and Biological Sciences 31 13%
Biochemistry, Genetics and Molecular Biology 22 9%
Physics and Astronomy 5 2%
Other 18 8%
Unknown 58 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 July 2013.
All research outputs
#15,274,524
of 22,714,025 outputs
Outputs from Frontiers in Physiology
#6,610
of 13,524 outputs
Outputs of similar age
#181,528
of 280,747 outputs
Outputs of similar age from Frontiers in Physiology
#188
of 398 outputs
Altmetric has tracked 22,714,025 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,524 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.5. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,747 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 25th percentile – i.e., 25% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 398 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.