↓ Skip to main content

STIM and Orai isoform expression in pregnant human myometrium: a potential role in calcium signaling during pregnancy

Overview of attention for article published in Frontiers in Physiology, May 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
20 Dimensions

Readers on

mendeley
34 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
STIM and Orai isoform expression in pregnant human myometrium: a potential role in calcium signaling during pregnancy
Published in
Frontiers in Physiology, May 2014
DOI 10.3389/fphys.2014.00169
Pubmed ID
Authors

Evonne C. Chin-Smith, Donna M. Slater, Mark R. Johnson, Rachel M. Tribe

Abstract

Store-operated calcium (Ca(2+)) entry (SOCE) can be mediated by two novel proteins, STIM/Orai. We have previously demonstrated that members of the TRPC family, putative basal and store operated calcium entry channels, are present in human myometrium and regulated by labor associated stimuli IL-1β and mechanical stretch. Although STIM and Orai isoforms (1-3) have been reported in other smooth muscle cell types, there is little known about the expression or gestational regulation of STIM and Orai expression in human myometrium. Total RNA was isolated from lower segment human myometrial biopsies obtained at Cesarean section from women at the time of preterm no labor (PTNL), preterm labor (PTL), term non-labor (TNL), and term with labor (TL); primary cultured human uterine smooth muscle cells, and a human myometrial cell line (hTERT-HM). STIM1-2, and Orai1-3 mRNA expression was assessed by quantitative real-time PCR. All five genes were expressed in myometrial tissue and cultured cells. STIM1-2 and Orai2-3 expression was significantly lower in cultured cells compared tissue. This has implications with regard investigation of the contribution of these proteins in cultured cells. Orai2 was the most abundant Orai isoform in human myometrium. Expression of STIM1-2/Orai1-3 did not alter with the onset of labor. Orai1 mRNA expression in cultured cells was enhanced by IL-1β treatment. This novel report of STIM1-2 and Orai1-3 mRNA expression in pregnant human myometrium and Orai1 regulation by IL-1β indicates a potential role for these proteins in calcium signaling in human myometrium during pregnancy.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 34 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 34 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 18%
Student > Ph. D. Student 6 18%
Student > Master 4 12%
Student > Bachelor 3 9%
Professor 3 9%
Other 6 18%
Unknown 6 18%
Readers by discipline Count As %
Medicine and Dentistry 9 26%
Biochemistry, Genetics and Molecular Biology 4 12%
Agricultural and Biological Sciences 4 12%
Nursing and Health Professions 2 6%
Arts and Humanities 1 3%
Other 6 18%
Unknown 8 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 May 2014.
All research outputs
#18,371,959
of 22,755,127 outputs
Outputs from Frontiers in Physiology
#8,089
of 13,559 outputs
Outputs of similar age
#164,230
of 227,400 outputs
Outputs of similar age from Frontiers in Physiology
#66
of 109 outputs
Altmetric has tracked 22,755,127 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,559 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.5. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 227,400 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 109 others from the same source and published within six weeks on either side of this one. This one is in the 34th percentile – i.e., 34% of its contemporaries scored the same or lower than it.