↓ Skip to main content

The buffer capacity of airway epithelial secretions

Overview of attention for article published in Frontiers in Physiology, June 2014
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
31 Dimensions

Readers on

mendeley
48 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The buffer capacity of airway epithelial secretions
Published in
Frontiers in Physiology, June 2014
DOI 10.3389/fphys.2014.00188
Pubmed ID
Authors

Dusik Kim, Jie Liao, John W. Hanrahan

Abstract

The pH of airway epithelial secretions influences bacterial killing and mucus properties and is reduced by acidic pollutants, gastric reflux, and respiratory diseases such as cystic fibrosis (CF). The effect of acute acid loads depends on buffer capacity, however the buffering of airway secretions has not been well characterized. In this work we develop a method for titrating micro-scale (30 μl) volumes and use it to study fluid secreted by the human airway epithelial cell line Calu-3, a widely used model for submucosal gland serous cells. Microtitration curves revealed that HCO(-) 3 is the major buffer. Peak buffer capacity (β) increased from 17 to 28 mM/pH during forskolin stimulation, and was reduced by >50% in fluid secreted by cystic fibrosis transmembrane conductance regulator (CFTR)-deficient Calu-3 monolayers, confirming an important role of CFTR in HCO(-) 3 secretion. Back-titration with NaOH revealed non-volatile buffer capacity due to proteins synthesized and released by the epithelial cells. Lysozyme and mucin concentrations were too low to buffer Calu-3 fluid significantly, however model titrations of porcine gastric mucins at concentrations near the sol-gel transition suggest that mucins may contribute to the buffer capacity of ASL in vivo. We conclude that CFTR-dependent HCO(-) 3 secretion and epithelially-derived proteins are the predominant buffers in Calu-3 secretions.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 48 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 2%
Netherlands 1 2%
Unknown 46 96%

Demographic breakdown

Readers by professional status Count As %
Researcher 12 25%
Student > Ph. D. Student 10 21%
Student > Master 7 15%
Student > Bachelor 5 10%
Student > Doctoral Student 3 6%
Other 4 8%
Unknown 7 15%
Readers by discipline Count As %
Agricultural and Biological Sciences 9 19%
Medicine and Dentistry 7 15%
Pharmacology, Toxicology and Pharmaceutical Science 7 15%
Biochemistry, Genetics and Molecular Biology 7 15%
Engineering 4 8%
Other 8 17%
Unknown 6 13%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 June 2014.
All research outputs
#20,231,392
of 22,757,090 outputs
Outputs from Frontiers in Physiology
#9,328
of 13,560 outputs
Outputs of similar age
#192,951
of 227,901 outputs
Outputs of similar age from Frontiers in Physiology
#73
of 104 outputs
Altmetric has tracked 22,757,090 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,560 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.5. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 227,901 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 104 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.