↓ Skip to main content

Role of sinoatrial node architecture in maintaining a balanced source-sink relationship and synchronous cardiac pacemaking

Overview of attention for article published in Frontiers in Physiology, November 2014
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
62 Dimensions

Readers on

mendeley
130 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Role of sinoatrial node architecture in maintaining a balanced source-sink relationship and synchronous cardiac pacemaking
Published in
Frontiers in Physiology, November 2014
DOI 10.3389/fphys.2014.00446
Pubmed ID
Authors

Sathya D. Unudurthi, Roseanne M. Wolf, Thomas J. Hund

Abstract

Normal heart rhythm (sinus rhythm) depends on regular activity of the sinoatrial node (SAN), a heterogeneous collection of specialized myocytes in the right atrium. SAN cells, in general, possess a unique electrophysiological profile that promotes spontaneous electrical activity (automaticity). However, while automaticity is required for normal pacemaking, it is not necessarily sufficient. Less appreciated is the importance of the elaborate structure of the SAN complex for proper pacemaker function. Here, we review the important structural features of the SAN with a focus on how these elements help manage a precarious balance between electrical charge generated by the SAN ("source") and the charge needed to excite the surrounding atrial tissue ("sink"). We also discuss how compromised "source-sink" balance due, for example to fibrosis, may promote SAN dysfunction, characterized by slow and/or asynchronous pacemaker activity and even failure, in the setting of cardiovascular disease (e.g., heart failure, atrial fibrillation). Finally, we discuss implications of the "source-sink" balance in the SAN complex for cell and gene therapies aimed at creating a biological pacemaker as replacement or bridge to conventional electronic pacemakers.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 130 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 130 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 30 23%
Student > Bachelor 19 15%
Researcher 13 10%
Student > Master 11 8%
Student > Postgraduate 6 5%
Other 15 12%
Unknown 36 28%
Readers by discipline Count As %
Medicine and Dentistry 29 22%
Engineering 14 11%
Biochemistry, Genetics and Molecular Biology 14 11%
Agricultural and Biological Sciences 12 9%
Physics and Astronomy 4 3%
Other 16 12%
Unknown 41 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 November 2014.
All research outputs
#20,243,777
of 22,771,140 outputs
Outputs from Frontiers in Physiology
#9,334
of 13,560 outputs
Outputs of similar age
#303,090
of 361,946 outputs
Outputs of similar age from Frontiers in Physiology
#73
of 107 outputs
Altmetric has tracked 22,771,140 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,560 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.5. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 361,946 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 107 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.