↓ Skip to main content

Insights into the Pathology of the α2-Na+/K+-ATPase in Neurological Disorders; Lessons from Animal Models

Overview of attention for article published in Frontiers in Physiology, May 2016
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (51st percentile)
  • Good Attention Score compared to outputs of the same age and source (66th percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
48 Dimensions

Readers on

mendeley
67 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Insights into the Pathology of the α2-Na+/K+-ATPase in Neurological Disorders; Lessons from Animal Models
Published in
Frontiers in Physiology, May 2016
DOI 10.3389/fphys.2016.00161
Pubmed ID
Authors

Toke J. Isaksen, Karin Lykke-Hartmann

Abstract

A functional Na(+)/K(+)-ATPase consists of a catalytic α subunit and a regulatory β subunit. Four α isoforms of the Na(+)/K(+)-ATPase are found in mammals, each with a unique expression pattern and catalytic activity. The α2 isoform, encoded by the ATP1A2 gene, is primarily found in the central nervous system (CNS) and in heart-, skeletal- and smooth muscle tissues. In the CNS, the α2 isoform is mainly expressed in glial cells. In particular, the α2 isoform is found in astrocytes, important for astrocytic K(+) clearance and, consequently, the indirect uptake of neurotransmitters. Both processes are essential for proper brain activity, and autosomal dominantly mutations in the ATP1A2 gene cause the neurological disorder Familial hemiplegic migraine type 2 (FHM2). FHM2 is a severe subtype of migraine with aura including temporary numbness or weakness, and affecting only one side of the body. FHM2 patients often suffer from neurological comorbidities such as seizures, sensory disturbances, cognitive impairment, and psychiatric manifestations. The functional consequences of FHM2 disease mutations leads to a partial or complete loss of function of pump activity; however, a clear phenotype-genotype correlation has yet to be elucidated. Gene-modified mouse models targeting the Atp1a2 gene have proved instrumental in the understanding of the pathology of FHM2. Several Atp1a2 knockout (KO) mice targeting different exons have been reported. Homozygous Atp1a2 KO mice die shortly after birth due to respiratory malfunction resulting from abnormal Cl(-) homeostasis in brainstem neurons. Heterozygous KO mice are viable, but display altered behavior and neurological deficits such as altered spatial learning, decreased motor activity and enhanced fear/anxiety compared to wild type mice. FHM2 knock-in (KI) mouse models carrying the human in vivo disease mutations W887R and G301R have also been reported. Both models display altered cortical spreading depression (CSD) and point to deficits in the glutamatergic system as the main underlying mechanism of FHM2.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 67 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 1%
Israel 1 1%
United States 1 1%
Unknown 64 96%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 15 22%
Researcher 8 12%
Student > Bachelor 6 9%
Student > Master 6 9%
Student > Postgraduate 4 6%
Other 10 15%
Unknown 18 27%
Readers by discipline Count As %
Neuroscience 16 24%
Agricultural and Biological Sciences 9 13%
Pharmacology, Toxicology and Pharmaceutical Science 4 6%
Biochemistry, Genetics and Molecular Biology 4 6%
Medicine and Dentistry 3 4%
Other 6 9%
Unknown 25 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 May 2016.
All research outputs
#13,392,095
of 22,867,327 outputs
Outputs from Frontiers in Physiology
#4,558
of 13,661 outputs
Outputs of similar age
#145,008
of 298,972 outputs
Outputs of similar age from Frontiers in Physiology
#43
of 136 outputs
Altmetric has tracked 22,867,327 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,661 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one has gotten more attention than average, scoring higher than 65% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 298,972 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.
We're also able to compare this research output to 136 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.