↓ Skip to main content

Pressure Induced Changes in Adaptive Immune Function in Belugas (Delphinapterus leucas); Implications for Dive Physiology and Health

Overview of attention for article published in Frontiers in Physiology, September 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
14 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Pressure Induced Changes in Adaptive Immune Function in Belugas (Delphinapterus leucas); Implications for Dive Physiology and Health
Published in
Frontiers in Physiology, September 2016
DOI 10.3389/fphys.2016.00442
Pubmed ID
Authors

Laura A. Thompson, Tracy A. Romano

Abstract

Increased pressure, associated with diving, can alter cell function through several mechanisms and has been shown to impact immune functions performed by peripheral blood mononuclear cells (PBMC) in humans. While marine mammals possess specific adaptations which protect them from dive related injury, it is unknown how their immune system is adapted to the challenges associated with diving. The purpose of this study was to measure PBMC activation (IL2R expression) and Concanavalin A induced lymphocyte proliferation (BrdU incorporation) in belugas following in vitro pressure exposures during baseline, Out of Water Examination (OWE) and capture/release conditions. Beluga blood samples (n = 4) were obtained from animals at the Mystic Aquarium and from free ranging animals in Alaska (n = 9). Human blood samples (n = 4) (Biological Specialty Corporation) were run for comparison. In vivo catecholamines and cortisol were measured in belugas to characterize the neuroendocrine response. Comparison of cellular responses between controls and pressure exposed cells, between conditions in belugas, between belugas and humans as well as between dive profiles, were run using mixed generalized linear models (α = 0.05). Cortisol was significantly higher in Bristol Bay belugas and OWE samples as compared with baseline for aquarium animals. Both IL2R expression and proliferation displayed significant pressure induced changes, and these responses varied between conditions in belugas. Both belugas and humans displayed increased IL2R expression, while lymphocyte proliferation decreased for aquarium animals and increased for humans and Bristol Bay belugas. Results suggest beluga PBMC function is altered during diving and changes may represent dive adaptation as the response differs from humans, a non-dive adapted mammal. In addition, characteristics of a dive (i.e., duration, depth) as well as neuroendocrine activity can alter the response of beluga cells, potentially impacting the ability of animals to fight infection or avoid dive related pathologies.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 14 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 14 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 4 29%
Other 1 7%
Student > Ph. D. Student 1 7%
Student > Master 1 7%
Researcher 1 7%
Other 1 7%
Unknown 5 36%
Readers by discipline Count As %
Environmental Science 2 14%
Biochemistry, Genetics and Molecular Biology 2 14%
Nursing and Health Professions 1 7%
Agricultural and Biological Sciences 1 7%
Immunology and Microbiology 1 7%
Other 1 7%
Unknown 6 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 October 2016.
All research outputs
#17,818,042
of 22,890,496 outputs
Outputs from Frontiers in Physiology
#7,184
of 13,680 outputs
Outputs of similar age
#231,136
of 322,482 outputs
Outputs of similar age from Frontiers in Physiology
#80
of 170 outputs
Altmetric has tracked 22,890,496 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,680 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one is in the 40th percentile – i.e., 40% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 322,482 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 24th percentile – i.e., 24% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 170 others from the same source and published within six weeks on either side of this one. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.