↓ Skip to main content

Microbiota Is Involved in Post-resection Adaptation in Humans with Short Bowel Syndrome

Overview of attention for article published in Frontiers in Physiology, April 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
40 Dimensions

Readers on

mendeley
59 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Microbiota Is Involved in Post-resection Adaptation in Humans with Short Bowel Syndrome
Published in
Frontiers in Physiology, April 2017
DOI 10.3389/fphys.2017.00224
Pubmed ID
Authors

Laura Gillard, Camille Mayeur, Véronique Robert, Isabelle Pingenot, Johanne Le Beyec, André Bado, Patricia Lepage, Muriel Thomas, Francisca Joly

Abstract

Short bowel syndrome (SBS) is characterized by severe intestinal malabsorption following restrictive surgery. The objective of this study was to determine the functional contribution of SBS-microbiota after resection. It is well-known that SBS-microbiota displayed specific features with a prevalence of Lactobacillus, a low amount of some anaerobic microbes (Clostridium leptum) and an accumulation of fecal lactate in some patients. Patients with jejuno-colonic anastomosis were stratified according to the presence of lactate in their feces and, we observe that the lactate-producing bacteria were predominant in the sub-group of patients accumulating fecal lactate. One case of D-encephalopathy crisis occurred when the D-lactate isoform accumulated in the feces and plasma bicarbonate levels decreased. The fecal sample at the time of the encephalopathy was transferred to germ free rats (SBS-H rats). The SBS-H microbiota conserved some characteristics of the SBS donnor, predominated by lactate-producing bacteria (mainly Lactobacillus), a low level of lactate-consuming bacteria and undetectable C. leptum. However, lactate did not accumulate in feces of recipient rats and the D-encephalopathy was not reproduced in SBS-H rats. This suggests that the intact small bowel of the recipient rats protected them from lactate accumulation and that D-lactate encephalopathy can occur only in the absence of small intestine. After fecal transfer, we also show that gnotobiotic rats exhibited high levels of circulating GLP-1 and ghrelin, two hormones that are known to be induced in SBS patients. Therefore, the microbiota of SBS is a reservoir of biological signals involved in post-resection adaptation.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 59 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 59 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 19%
Researcher 11 19%
Professor 4 7%
Student > Postgraduate 4 7%
Student > Master 4 7%
Other 10 17%
Unknown 15 25%
Readers by discipline Count As %
Medicine and Dentistry 21 36%
Immunology and Microbiology 5 8%
Agricultural and Biological Sciences 4 7%
Biochemistry, Genetics and Molecular Biology 3 5%
Nursing and Health Professions 2 3%
Other 6 10%
Unknown 18 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 May 2017.
All research outputs
#17,887,790
of 22,965,074 outputs
Outputs from Frontiers in Physiology
#7,205
of 13,715 outputs
Outputs of similar age
#221,044
of 310,317 outputs
Outputs of similar age from Frontiers in Physiology
#137
of 240 outputs
Altmetric has tracked 22,965,074 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,715 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one is in the 40th percentile – i.e., 40% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 310,317 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 24th percentile – i.e., 24% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 240 others from the same source and published within six weeks on either side of this one. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.