↓ Skip to main content

The Electrogenic Na+/K+ Pump Is a Key Determinant of Repolarization Abnormality Susceptibility in Human Ventricular Cardiomyocytes: A Population-Based Simulation Study

Overview of attention for article published in Frontiers in Physiology, May 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (76th percentile)
  • Good Attention Score compared to outputs of the same age and source (78th percentile)

Mentioned by

policy
1 policy source
twitter
2 X users
wikipedia
1 Wikipedia page

Citations

dimensions_citation
50 Dimensions

Readers on

mendeley
59 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The Electrogenic Na+/K+ Pump Is a Key Determinant of Repolarization Abnormality Susceptibility in Human Ventricular Cardiomyocytes: A Population-Based Simulation Study
Published in
Frontiers in Physiology, May 2017
DOI 10.3389/fphys.2017.00278
Pubmed ID
Authors

Oliver J. Britton, Alfonso Bueno-Orovio, László Virág, András Varró, Blanca Rodriguez

Abstract

Background: Cellular repolarization abnormalities occur unpredictably due to disease and drug effects, and can occur even in cardiomyocytes that exhibit normal action potentials (AP) under control conditions. Variability in ion channel densities may explain differences in this susceptibility to repolarization abnormalities. Here, we quantify the importance of key ionic mechanisms determining repolarization abnormalities following ionic block in human cardiomyocytes yielding normal APs under control conditions. Methods and Results: Sixty two AP recordings from non-diseased human heart preparations were used to construct a population of human ventricular models with normal APs and a wide range of ion channel densities. Multichannel ionic block was applied to investigate susceptibility to repolarization abnormalities. IKr block was necessary for the development of repolarization abnormalities. Models that developed repolarization abnormalities over the widest range of blocks possessed low Na(+)/K(+) pump conductance below 50% of baseline, and ICaL conductance above 70% of baseline. Furthermore, INaK made the second largest contribution to repolarizing current in control simulations and the largest contribution under 75% IKr block. Reversing intracellular Na(+) overload caused by reduced INaK was not sufficient to prevent abnormalities in models with low Na(+)/K(+) pump conductance, while returning Na(+)/K(+) pump conductance to normal substantially reduced abnormality occurrence, indicating INaK is an important repolarization current. Conclusions: INaK is an important determinant of repolarization abnormality susceptibility in human ventricular cardiomyocytes, through its contribution to repolarization current rather than homeostasis. While we found IKr block to be necessary for repolarization abnormalities to occur, INaK decrease, as in disease, may amplify the pro-arrhythmic risk of drug-induced IKr block in humans.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 59 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 59 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 13 22%
Student > Ph. D. Student 11 19%
Student > Bachelor 9 15%
Student > Doctoral Student 8 14%
Student > Master 2 3%
Other 4 7%
Unknown 12 20%
Readers by discipline Count As %
Engineering 18 31%
Biochemistry, Genetics and Molecular Biology 6 10%
Computer Science 6 10%
Agricultural and Biological Sciences 4 7%
Pharmacology, Toxicology and Pharmaceutical Science 3 5%
Other 7 12%
Unknown 15 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 8. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 July 2023.
All research outputs
#4,882,294
of 26,262,977 outputs
Outputs from Frontiers in Physiology
#2,464
of 15,789 outputs
Outputs of similar age
#76,651
of 329,397 outputs
Outputs of similar age from Frontiers in Physiology
#56
of 261 outputs
Altmetric has tracked 26,262,977 research outputs across all sources so far. Compared to these this one has done well and is in the 81st percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 15,789 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one has done well, scoring higher than 84% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,397 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 76% of its contemporaries.
We're also able to compare this research output to 261 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 78% of its contemporaries.