↓ Skip to main content

Cardiorespiratory Coordination in Repeated Maximal Exercise

Overview of attention for article published in Frontiers in Physiology, June 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (80th percentile)
  • Good Attention Score compared to outputs of the same age and source (79th percentile)

Mentioned by

twitter
12 X users

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
50 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Cardiorespiratory Coordination in Repeated Maximal Exercise
Published in
Frontiers in Physiology, June 2017
DOI 10.3389/fphys.2017.00387
Pubmed ID
Authors

Sergi Garcia-Retortillo, Casimiro Javierre, Robert Hristovski, Josep L. Ventura, Natàlia Balagué

Abstract

Increases in cardiorespiratory coordination (CRC) after training with no differences in performance and physiological variables have recently been reported using a principal component analysis approach. However, no research has yet evaluated the short-term effects of exercise on CRC. The aim of this study was to delineate the behavior of CRC under different physiological initial conditions produced by repeated maximal exercises. Fifteen participants performed 2 consecutive graded and maximal cycling tests. Test 1 was performed without any previous exercise, and Test 2 6 min after Test 1. Both tests started at 0 W and the workload was increased by 25 W/min in males and 20 W/min in females, until they were not able to maintain the prescribed cycling frequency of 70 rpm for more than 5 consecutive seconds. A principal component (PC) analysis of selected cardiovascular and cardiorespiratory variables (expired fraction of O2, expired fraction of CO2, ventilation, systolic blood pressure, diastolic blood pressure, and heart rate) was performed to evaluate the CRC defined by the number of PCs in both tests. In order to quantify the degree of coordination, the information entropy was calculated and the eigenvalues of the first PC (PC1) were compared between tests. Although no significant differences were found between the tests with respect to the performed maximal workload (Wmax), maximal oxygen consumption (VO2 max), or ventilatory threshold (VT), an increase in the number of PCs and/or a decrease of eigenvalues of PC1 (t = 2.95; p = 0.01; d = 1.08) was found in Test 2 compared to Test 1. Moreover, entropy was significantly higher (Z = 2.33; p = 0.02; d = 1.43) in the last test. In conclusion, despite the fact that no significant differences were observed in the conventionally explored maximal performance and physiological variables (Wmax, VO2 max, and VT) between tests, a reduction of CRC was observed in Test 2. These results emphasize the interest of CRC evaluation in the assessment and interpretation of cardiorespiratory exercise testing.

X Demographics

X Demographics

The data shown below were collected from the profiles of 12 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 50 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 50 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 7 14%
Student > Ph. D. Student 5 10%
Student > Master 4 8%
Lecturer 3 6%
Professor 3 6%
Other 10 20%
Unknown 18 36%
Readers by discipline Count As %
Sports and Recreations 19 38%
Medicine and Dentistry 3 6%
Nursing and Health Professions 2 4%
Agricultural and Biological Sciences 2 4%
Engineering 2 4%
Other 3 6%
Unknown 19 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 July 2017.
All research outputs
#3,264,593
of 22,979,862 outputs
Outputs from Frontiers in Physiology
#1,774
of 13,727 outputs
Outputs of similar age
#62,551
of 317,348 outputs
Outputs of similar age from Frontiers in Physiology
#55
of 275 outputs
Altmetric has tracked 22,979,862 research outputs across all sources so far. Compared to these this one has done well and is in the 85th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 13,727 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one has done well, scoring higher than 87% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 317,348 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 80% of its contemporaries.
We're also able to compare this research output to 275 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 79% of its contemporaries.