↓ Skip to main content

Molecular Basis of N,N-Diethyl-3-Methylbenzamide (DEET) in Repelling the Common Bed Bug, Cimex lectularius

Overview of attention for article published in Frontiers in Physiology, June 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users
facebook
1 Facebook page

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
23 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Molecular Basis of N,N-Diethyl-3-Methylbenzamide (DEET) in Repelling the Common Bed Bug, Cimex lectularius
Published in
Frontiers in Physiology, June 2017
DOI 10.3389/fphys.2017.00418
Pubmed ID
Authors

Feng Liu, Xiaoming Xia, Nannan Liu

Abstract

As the most extensively used chemical repellent, N,N-diethyl-3-methylbenzamide (DEET) displayed repellency to a wide range of insects, including the common bed bug, Cimex lectularius. While the neuronal or molecular basis involved in DEET's repellency have been majorly focused on mosquitos and fruit flies, DEET's repellency to the common bed bug is largely unreached. To gain new insights into the cellular and molecular mechanisms in DEET's repellency to the common bed bug, we characterized the neuronal response of bed bugs to DEET, identified the olfactory receptors targeted by DEET and demonstrated the interfering effect of DEET on bed bug's responses to human odorants. High doses of DEET were required for activating the olfactory receptor neurons in the sensilla of bed bugs and at least three DEET-sensitive receptors were functionally deciphered. These DEET-sensitive receptors presented even more sensitive to certain botanical terpenes/terpenoids which also displayed repellency at varying levels for bed bugs. In addition, DEET produced a blocking effect on the neuronal responses of bed bugs to specific human odors and showed inhibitory effect on the function of odorant receptors in responding to certain human odors. Taken together, our results indicate that DEET may function as a stimulus that triggers avoidance behaviors and a molecular "confusant" for interrupting the host odor recognition in the odorant receptors of bed bugs. The receptors that coincidently responded to both synthetic DEET and botanical terpenes/terpenoids suggested that DEET probably target on receptors that originally responded to terpenes/terpenoids. This study gave novel insight into the mechanisms of DEET's repellency to bed bugs and also provided valuable information for developing new reagents for bed bug control.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 23 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 23 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 4 17%
Researcher 4 17%
Student > Ph. D. Student 3 13%
Student > Doctoral Student 2 9%
Student > Bachelor 1 4%
Other 1 4%
Unknown 8 35%
Readers by discipline Count As %
Agricultural and Biological Sciences 9 39%
Medicine and Dentistry 2 9%
Neuroscience 2 9%
Veterinary Science and Veterinary Medicine 1 4%
Unknown 9 39%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 July 2017.
All research outputs
#15,212,005
of 24,151,461 outputs
Outputs from Frontiers in Physiology
#5,738
of 14,789 outputs
Outputs of similar age
#180,860
of 320,556 outputs
Outputs of similar age from Frontiers in Physiology
#134
of 285 outputs
Altmetric has tracked 24,151,461 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 14,789 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.8. This one has gotten more attention than average, scoring higher than 58% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 320,556 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 285 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.