↓ Skip to main content

Muscle Shear Moduli Changes and Frequency of Alternate Muscle Activity of Plantar Flexor Synergists Induced by Prolonged Low-Level Contraction

Overview of attention for article published in Frontiers in Physiology, September 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
20 Dimensions

Readers on

mendeley
33 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Muscle Shear Moduli Changes and Frequency of Alternate Muscle Activity of Plantar Flexor Synergists Induced by Prolonged Low-Level Contraction
Published in
Frontiers in Physiology, September 2017
DOI 10.3389/fphys.2017.00708
Pubmed ID
Authors

Ryota Akagi, Takahito Fukui, Masato Kubota, Masashi Nakamura, Ryoichi Ema

Abstract

During prolonged low-level contractions, synergist muscles are activated in an alternating pattern of activity and silence called as alternate muscle activity. Resting muscle stiffness is considered to increase due to muscle fatigue. Thus, we investigated whether the difference in the extent of fatigue of each plantar flexor synergist corresponded to the difference in the frequency of alternate muscle activity between the synergists using muscle shear modulus as an index of muscle stiffness. Nineteen young men voluntarily participated in this study. The shear moduli of the resting medial and lateral gastrocnemius muscles (MG and LG) and soleus muscle (SOL) were measured using shear wave ultrasound elastography before and after a 1-h sustained contraction at 10% peak torque during maximal voluntary contraction of isometric plantar flexion. One subject did not accomplish the task and the alternate muscle activity for MG was not found in 2 subjects; therefore, data for 16 subjects were used for further analyses. The magnitude of muscle activation during the fatiguing task was similar in MG and SOL. The percent change in shear modulus before and after the fatiguing task (MG: 16.7 ± 12.0%, SOL: -4.1 ± 13.9%; mean ± standard deviation) and the alternate muscle activity during the fatiguing task (MG: 33 [20-51] times, SOL: 30 [17-36] times; median [25th-75th percentile]) were significantly higher in MG than in SOL. The contraction-induced change in shear modulus (7.4 ± 20.3%) and the alternate muscle activity (37 [20-45] times) of LG with the lowest magnitude of muscle activation during the fatiguing task among the plantar flexors were not significantly different from those of the other muscles. These results suggest that the degree of increase in muscle shear modulus induced by prolonged contraction corresponds to the frequency of alternate muscle activity between MG and SOL during prolonged contraction. Thus, it is likely that, compared with SOL, the alternate muscle activity of MG occurs more frequently during prolonged contraction due to the greater increase in fatigue of MG induced by the progression of a fatiguing task.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 33 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 33 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 15%
Student > Bachelor 5 15%
Student > Ph. D. Student 3 9%
Student > Master 3 9%
Other 2 6%
Other 8 24%
Unknown 7 21%
Readers by discipline Count As %
Sports and Recreations 8 24%
Engineering 3 9%
Medicine and Dentistry 3 9%
Nursing and Health Professions 1 3%
Arts and Humanities 1 3%
Other 5 15%
Unknown 12 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 September 2017.
All research outputs
#20,447,499
of 23,002,898 outputs
Outputs from Frontiers in Physiology
#9,474
of 13,760 outputs
Outputs of similar age
#278,123
of 318,397 outputs
Outputs of similar age from Frontiers in Physiology
#216
of 300 outputs
Altmetric has tracked 23,002,898 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,760 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 318,397 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 300 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.