↓ Skip to main content

Recent Advances in the Cellular and Molecular Mechanisms of Hypothalamic Neuronal Glucose Detection

Overview of attention for article published in Frontiers in Physiology, November 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (55th percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
38 Dimensions

Readers on

mendeley
58 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Recent Advances in the Cellular and Molecular Mechanisms of Hypothalamic Neuronal Glucose Detection
Published in
Frontiers in Physiology, November 2017
DOI 10.3389/fphys.2017.00875
Pubmed ID
Authors

Xavier Fioramonti, Chloé Chrétien, Corinne Leloup, Luc Pénicaud

Abstract

The hypothalamus have been recognized for decades as one of the major brain centers for the control of energy homeostasis. This area contains specialized neurons able to detect changes in nutrients level. Among them, glucose-sensing neurons use glucose as a signaling molecule in addition to its fueling role. In this review we will describe the different sub-populations of glucose-sensing neurons present in the hypothalamus and highlight their nature in terms of neurotransmitter/neuropeptide expression. This review will particularly discuss whether pro-opiomelanocortin (POMC) neurons from the arcuate nucleus are directly glucose-sensing. In addition, recent observations in glucose-sensing suggest a subtle system with different mechanisms involved in the detection of changes in glucose level and their involvement in specific physiological functions. Several data point out the critical role of reactive oxygen species (ROS) and mitochondria dynamics in the detection of increased glucose. This review will also highlight that ATP-dependent potassium (KATP) channels are not the only channels mediating glucose-sensing and discuss the new role of transient receptor potential canonical channels (TRPC). We will discuss the recent advances in the determination of glucose-sensing machinery and propose potential line of research needed to further understand the regulation of brain glucose detection.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 58 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 58 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 16%
Researcher 8 14%
Student > Bachelor 7 12%
Student > Master 6 10%
Professor 3 5%
Other 10 17%
Unknown 15 26%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 13 22%
Neuroscience 12 21%
Agricultural and Biological Sciences 6 10%
Medicine and Dentistry 5 9%
Pharmacology, Toxicology and Pharmaceutical Science 1 2%
Other 4 7%
Unknown 17 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 December 2017.
All research outputs
#14,367,874
of 23,007,887 outputs
Outputs from Frontiers in Physiology
#5,333
of 13,760 outputs
Outputs of similar age
#180,487
of 325,276 outputs
Outputs of similar age from Frontiers in Physiology
#146
of 332 outputs
Altmetric has tracked 23,007,887 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,760 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one has gotten more attention than average, scoring higher than 58% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 325,276 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 332 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 55% of its contemporaries.