↓ Skip to main content

Reticuloendotheliosis Virus Inhibits the Immune Response Acting on Lymphocytes from Peripheral Blood of Chicken

Overview of attention for article published in Frontiers in Physiology, January 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
7 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Reticuloendotheliosis Virus Inhibits the Immune Response Acting on Lymphocytes from Peripheral Blood of Chicken
Published in
Frontiers in Physiology, January 2018
DOI 10.3389/fphys.2018.00004
Pubmed ID
Authors

Yulin Bi, Lu Xu, Lingling Qiu, Shasha Wang, Xiangping Liu, Yani Zhang, Yang Chen, Yang Zhang, Qi Xu, Guobin Chang, Guohong Chen

Abstract

Chicken reticuloendotheliosis virus (REV) causes the atrophy of immune organs and immuno-suppression. The pathogenic mechanisms of REV are poorly understood. The aim of this study was to use RNA sequencing to analyse the effect of REV on immunity and cell proliferation in chicken lymphocytes from peripheral blood in vitro. Overall, 2977 differentially expressed genes (DEGs) were examined from cells between infected with REV or no; 56 DEGs related to cell proliferation and 130 DEGs related to immunity were identified. MTT, Q-PCR, and FCM indicated that REV reduced the number of lymphocytes by inhibiting the transition of S/G1 phase through FOXO and p53 pathways. Similarly, REV infection would destroy the immune defense of lymphocytes through MAPK-AP1 via Toll-like receptor-, NOD-like receptor-, and salmonella infection pathways to reduce the secretion of IL8 and IL18. In addition, the reduction of lymphocytes also might be responsible for the lower levels of IL8 and IL18, and the rescue of lymphocytes would been activated still through FOXO and p53 pathways. Moreover, the immune response for REV in lymphocytes would activate by up-regulating the expression of NOD1, MYD88, and AP1 through Toll-like receptor-/NOD-like receptor/salmonella-MAPK-AP1 pathways. These results indicate that REV could affect lymphocytes from peripheral blood by inhibit the cell proliferation and the immune system. It also was revealed that NOD1, MYD88, and AP1 were the key genes to activate the immune response through Toll-like receptor-/NOD-like receptor/salmonella-MAPK-AP1 pathways. These findings establish the groundwork and provide new clues for deciphering the molecular mechanism underlying REV infection in chickens.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 7 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 7 100%

Demographic breakdown

Readers by professional status Count As %
Lecturer 1 14%
Student > Bachelor 1 14%
Student > Ph. D. Student 1 14%
Student > Master 1 14%
Researcher 1 14%
Other 0 0%
Unknown 2 29%
Readers by discipline Count As %
Veterinary Science and Veterinary Medicine 2 29%
Nursing and Health Professions 1 14%
Agricultural and Biological Sciences 1 14%
Engineering 1 14%
Unknown 2 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 January 2018.
All research outputs
#20,461,148
of 23,018,998 outputs
Outputs from Frontiers in Physiology
#9,487
of 13,772 outputs
Outputs of similar age
#378,143
of 441,019 outputs
Outputs of similar age from Frontiers in Physiology
#220
of 309 outputs
Altmetric has tracked 23,018,998 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,772 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 441,019 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 309 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.