↓ Skip to main content

Dietary Safety Assessment of Flk1-Transgenic Fish

Overview of attention for article published in Frontiers in Physiology, January 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (79th percentile)
  • Good Attention Score compared to outputs of the same age and source (77th percentile)

Mentioned by

twitter
12 X users

Readers on

mendeley
19 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Dietary Safety Assessment of Flk1-Transgenic Fish
Published in
Frontiers in Physiology, January 2018
DOI 10.3389/fphys.2018.00008
Pubmed ID
Authors

Yalan Wei, Ling Huang, Jinghui Cao, Chenghui Wang, Jizhou Yan

Abstract

Genetic engineering, also called genetic modification, is facing with growing demands of aquaculture and aquatic products. Although various genetically modified (GM) aquatics have been generated, it is important to evaluate biosafety of GM organisms on the human health before entering into our food chain. For this purpose, we establish a zebrafish wild adult feeding Flk1-transgenic larvae model to examine the predatory fish's histology in multiple tissues, and the global gene expression profile in the liver. 180 days of feeding trial show that there are no significantly morphological changes in intestine, liver, kidney, and sex gonads between fish fed with Flk1 transgenic fish diet (TFD) and fish fed with regular food meal (RFM). However, a characteristic skin spot and autofluorescence increase in the theca of follicle are observed in F1 generation of TFD fish. Liver RNA-sequencing analyses demonstrate that 53 out of 56712 genes or isoforms are differentially transcribed, and mostly involved in proteolysis in extracellular region. According to GO enrichment terms these deregulated genes function in catalytic activity, steroid storing, lipid metabolic process and N-Glycan biosynthesis. These results suggest that a long term of Flk1-transgenic fish diet could alter certain metabolic pathways and possibly cause related tissue deformation. Compared to the previous reports, our feasible transgenic dietary assess system could evaluate subchronic and potential health impact of transgenic fish diet by combining multi-tissue histology and liver transcriptome analyses.

X Demographics

X Demographics

The data shown below were collected from the profiles of 12 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 19 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 4 21%
Researcher 2 11%
Lecturer 1 5%
Unspecified 1 5%
Other 1 5%
Other 1 5%
Unknown 9 47%
Readers by discipline Count As %
Agricultural and Biological Sciences 4 21%
Medicine and Dentistry 2 11%
Biochemistry, Genetics and Molecular Biology 1 5%
Nursing and Health Professions 1 5%
Unspecified 1 5%
Other 0 0%
Unknown 10 53%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 8. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 February 2018.
All research outputs
#4,099,532
of 23,018,998 outputs
Outputs from Frontiers in Physiology
#2,081
of 13,772 outputs
Outputs of similar age
#91,815
of 441,125 outputs
Outputs of similar age from Frontiers in Physiology
#69
of 309 outputs
Altmetric has tracked 23,018,998 research outputs across all sources so far. Compared to these this one has done well and is in the 82nd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 13,772 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one has done well, scoring higher than 84% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 441,125 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 79% of its contemporaries.
We're also able to compare this research output to 309 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 77% of its contemporaries.