↓ Skip to main content

Salinity Effects on Strategies of Glycogen Utilization in Livers of Euryhaline Milkfish (Chanos chanos) under Hypothermal Stress

Overview of attention for article published in Frontiers in Physiology, February 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
38 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Salinity Effects on Strategies of Glycogen Utilization in Livers of Euryhaline Milkfish (Chanos chanos) under Hypothermal Stress
Published in
Frontiers in Physiology, February 2018
DOI 10.3389/fphys.2018.00081
Pubmed ID
Authors

Chia-Hao Chang, Jian-Jun Huang, Chun-Yi Yeh, Cheng-Hao Tang, Lie-Yueh Hwang, Tsung-Han Lee

Abstract

The fluctuation of temperature affects many physiological responses in ectothermic organisms, including feed intake, growth, reproduction, and behavior. Changes in environmental temperatures affect the acquisition of energy, whereas hepatic glycogen plays a central role in energy supply for the homeostasis of the entire body. Glycogen phosphorylase (GP), which catalyzes the rate-limiting step in glycogenolysis, is also an indicator of environmental stress. Here, we examined the effects of salinity on glycogen metabolism in milkfish livers under cold stress. A reduction of feed intake was observed in both freshwater (FW) and seawater (SW) milkfish under cold adaptation. At normal temperature (28°C), compared to the FW milkfish, the SW milkfish exhibited greater mRNA abundance of the liver isoform of GP (Ccpygl), higher GP activity, and less glycogen content in the livers. Upon hypothermal (18°C) stress, hepaticCcpyglmRNA expression of FW milkfish surged at 3 h, declined at 6 and 12 h, increased again at 24 h, and increased significantly after 96 h. Increases in GP protein, GP activity, and the phosphorylation state and the breakdown of glycogen were also found in FW milkfish livers after 12 h of exposure at 18°C. Conversely, theCcpygltranscript levels in SW milkfish were downregulated after 1 h of exposure at 18°C, whereas the protein abundance of GP, GP activity, and glycogen content were not significantly altered. Taken together, under 18°C cold stress, FW milkfish exhibited an acute response with the breakdown of hepatic glycogen for maintaining energy homeostasis of the entire body, whereas no change was observed in the hepatic glycogen content and GP activity of SW milkfish because of their greater tolerance to cold conditions.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 38 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 38 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 13%
Lecturer 4 11%
Unspecified 3 8%
Student > Ph. D. Student 3 8%
Student > Master 3 8%
Other 8 21%
Unknown 12 32%
Readers by discipline Count As %
Agricultural and Biological Sciences 12 32%
Unspecified 3 8%
Biochemistry, Genetics and Molecular Biology 3 8%
Environmental Science 1 3%
Chemical Engineering 1 3%
Other 3 8%
Unknown 15 39%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 February 2018.
All research outputs
#20,465,050
of 23,023,224 outputs
Outputs from Frontiers in Physiology
#9,487
of 13,773 outputs
Outputs of similar age
#382,638
of 445,207 outputs
Outputs of similar age from Frontiers in Physiology
#243
of 334 outputs
Altmetric has tracked 23,023,224 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,773 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 445,207 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 334 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.