↓ Skip to main content

Postactivation Potentiation of the Plantar Flexors Does Not Directly Translate to Jump Performance in Female Elite Young Soccer Players

Overview of attention for article published in Frontiers in Physiology, March 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
122 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Postactivation Potentiation of the Plantar Flexors Does Not Directly Translate to Jump Performance in Female Elite Young Soccer Players
Published in
Frontiers in Physiology, March 2018
DOI 10.3389/fphys.2018.00276
Pubmed ID
Authors

Olaf Prieske, Nicola A. Maffiuletti, Urs Granacher

Abstract

High-intensity muscle actions have the potential to temporarily improve muscle contractile properties (i.e., postactivation potentiation, PAP) thereby inducing acute performance enhancements. There is evidence that balance training can improve performance during strength exercises. Taking these findings together, the purpose of this study was to examine the acute effects of a combined balance and strength (B+S) exercise vs. a strength only (S) exercise on twitch contractile properties, maximum voluntary strength, and jump performance in young athletes. Female elite young soccer players (N = 12) aged 14-15 years conducted three experimental conditions in randomized order: S included 3 sets of 8-10 dynamic leg extensions at 80% of the 1-repetition maximum, B+S consisted of 3 sets of 40 s double-leg stances on a balance board prior to leg extensions (same as S), and a resting control period. Before and 7 min after exercise, participants were tested for their electrically-evoked isometric twitches (i.e., twitch peak torque, twitch rate of torque development) and maximal voluntary contraction (MVC) torque of the plantar flexor muscles. Additionally, countermovement (CMJ) and drop jump (DJ) performances (i.e., CMJ/DJ height, DJ ground contact time) were assessed. Significant effects of condition on twitch contractile properties (p < 0.05, d = 1.1) and jump performance outputs (p < 0.05, 1.1 ≤ d ≤ 1.2) were found. Post-hoc tests revealed that S compared to control produced larger PAP for twitch peak torques by trend (p = 0.07, d = 1.8, 33 vs. 21%) and significantly larger PAP for twitch rate of torque development (p < 0.05, d = 2.4, 55 vs. 43%). Following B+S compared to control, significant improvements in CMJ height (p < 0.01, d = 1.9, 3%) and DJ contact time were found (p < 0.01, d = 2.0, 10%). This study revealed protocol-specific acute performance improvements. While S resulted in significant increases in twitch contractile properties, B+S produced significant enhancements in jump performance. It is concluded that PAP effects in the plantar flexors may not directly translate to improved jump performance in female elite young soccer players. Therefore, the observed gains in jump performance following B+S are most likely related to neuromuscular changes (e.g., intramuscular coordination) rather than improved contractile properties.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 122 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 122 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 18 15%
Student > Bachelor 15 12%
Researcher 8 7%
Student > Ph. D. Student 8 7%
Student > Doctoral Student 5 4%
Other 18 15%
Unknown 50 41%
Readers by discipline Count As %
Sports and Recreations 41 34%
Medicine and Dentistry 8 7%
Nursing and Health Professions 7 6%
Social Sciences 3 2%
Neuroscience 2 2%
Other 5 4%
Unknown 56 46%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 April 2018.
All research outputs
#15,495,840
of 23,028,364 outputs
Outputs from Frontiers in Physiology
#6,755
of 13,775 outputs
Outputs of similar age
#211,608
of 331,443 outputs
Outputs of similar age from Frontiers in Physiology
#216
of 416 outputs
Altmetric has tracked 23,028,364 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,775 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 331,443 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 416 others from the same source and published within six weeks on either side of this one. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.