↓ Skip to main content

Ammonia Excretion in an Osmoregulatory Syncytium Is Facilitated by AeAmt2, a Novel Ammonia Transporter in Aedes aegypti Larvae

Overview of attention for article published in Frontiers in Physiology, April 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (63rd percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
31 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Ammonia Excretion in an Osmoregulatory Syncytium Is Facilitated by AeAmt2, a Novel Ammonia Transporter in Aedes aegypti Larvae
Published in
Frontiers in Physiology, April 2018
DOI 10.3389/fphys.2018.00339
Pubmed ID
Authors

Andrea C. Durant, Andrew Donini

Abstract

The larvae of the mosquito Aedes aegypti inhabit ammonia rich septic tanks in tropical regions of the world that make extensive use of these systems, explaining the prevalence of disease during dry seasons. Since ammonia (NH3/[Formula: see text]) is toxic to animals, an understanding of the physiological mechanisms of ammonia excretion permitting the survival of A. aegypti larvae in high ammonia environments is important. We have characterized a novel ammonia transporter, AeAmt2, belonging to the Amt/MEP/Rh family of ammonia transporters. Based on the amino acid sequence, the predicted topology of AeAmt2 consists of 11 transmembrane helices with an extracellular N-terminus and a cytoplasmic C-terminus region. Alignment of the predicted AeAmt2 amino acid sequence with other Amt/MEP proteins from plants, bacteria, and yeast highlights the presence of conserved residues characteristic of ammonia conducting channels in this protein. AeAmt2 is expressed in the ionoregulatory anal papillae of A. aegypti larvae where it is localized to the apical membrane of the epithelium. dsRNA-mediated knockdown of AeAmt2 results in a significant decrease in [Formula: see text] efflux from the anal papillae, suggesting a key role in facilitating ammonia excretion. The effect of high environmental ammonia (HEA) on expression of AeAmt2, along with previously characterized AeAmt1, AeRh50-1, and AeRh50-2 in the anal papillae was investigated. We show that changes in expression of ammonia transporters occur in response to acute and chronic exposure to HEA, which reflects the importance of these transporters in the physiology of life in high ammonia habitats.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 31 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 31 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 7 23%
Student > Master 4 13%
Student > Ph. D. Student 4 13%
Professor 2 6%
Professor > Associate Professor 2 6%
Other 3 10%
Unknown 9 29%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 7 23%
Agricultural and Biological Sciences 7 23%
Environmental Science 3 10%
Computer Science 1 3%
Social Sciences 1 3%
Other 1 3%
Unknown 11 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 October 2019.
All research outputs
#13,228,192
of 23,045,021 outputs
Outputs from Frontiers in Physiology
#4,277
of 13,790 outputs
Outputs of similar age
#162,530
of 329,180 outputs
Outputs of similar age from Frontiers in Physiology
#169
of 467 outputs
Altmetric has tracked 23,045,021 research outputs across all sources so far. This one is in the 42nd percentile – i.e., 42% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,790 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one has gotten more attention than average, scoring higher than 68% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,180 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.
We're also able to compare this research output to 467 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 63% of its contemporaries.