↓ Skip to main content

Palmitic Acid Methyl Ester and Its Relation to Control of Tone of Human Visceral Arteries and Rat Aortas by Perivascular Adipose Tissue

Overview of attention for article published in Frontiers in Physiology, May 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
26 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Palmitic Acid Methyl Ester and Its Relation to Control of Tone of Human Visceral Arteries and Rat Aortas by Perivascular Adipose Tissue
Published in
Frontiers in Physiology, May 2018
DOI 10.3389/fphys.2018.00583
Pubmed ID
Authors

Ning Wang, Artur Kuczmanski, Galyna Dubrovska, Maik Gollasch

Abstract

Background: Perivascular adipose tissue (PVAT) exerts anti-contractile effects on visceral arteries by release of various perivascular relaxing factors (PVRFs) and opening voltage-gated K+ (Kv) channels in vascular smooth muscle cells (VSMCs). Palmitic acid methyl ester (PAME) has been proposed as transferable PVRF in rat aorta. Here, we studied PVAT regulation of arterial tone of human mesenteric arteries and clarified the contribution of Kv channels and PAME in the effects. Methods: Wire myography was used to measure vasocontractions of mesenteric artery rings from patients undergoing abdominal surgery. Isolated aortic rings from Sprague-Dawley rats were studied for comparison. PVAT was either left intact or removed from the arterial rings. Vasocontractions were induced by external high K+ (60 mM), serotonin (5-HT) or phenylephrine. PAME (10 nM-3 μM) was used as vasodilator. Kv channels were blocked by XE991, a Kv7 (KCNQ) channel inhibitor, or by 4-aminopyridine, a non-specific Kv channel inhibitor. PAME was measured in bathing solutions incubated with rat peri-aortic or human visceral adipose tissue. Results: We found that PVAT displayed anti-contractile effects in both human mesenteric arteries and rat aortas. The anti-contractile effects were inhibited by XE991 (30 μM). PAME (EC50 ~1.4 μM) was capable to produce relaxations of PVAT-removed rat aortas. These effects were abolished by XE991 (30 μM), but not 4-aminopyridine (2 mM) or NDGA (10 μM), a lipoxygenases inhibitor. The cytochrome P450 epoxygenase inhibitor 17-octadecynoic acid (ODYA 10 μM) and the soluble epoxide hydrolase inhibitor 12-(3-adamantan-1-ylureido)-dodecanoic acid (AUDA 10 μM) slightly decreased PAME relaxations. PAME up to 10 μM failed to induce relaxations of PVAT-removed human mesenteric arteries. 5-HT induced endogenous PAME release from rat peri-aortic adipose tissue, but not from human visceral adipose tissue. Conclusions: Our data also suggest that Kv7 channels are involved in the anti-contractile effects of PVAT on arterial tone in both rat aorta and human mesenteric arteries. PAME could contribute to PVAT relaxations by activating Kv7 channels in rat aorta, but not in human mesenteric arteries.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 26 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 26 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 15%
Student > Bachelor 4 15%
Student > Doctoral Student 2 8%
Researcher 2 8%
Other 1 4%
Other 4 15%
Unknown 9 35%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 19%
Pharmacology, Toxicology and Pharmaceutical Science 4 15%
Medicine and Dentistry 4 15%
Unspecified 1 4%
Environmental Science 1 4%
Other 4 15%
Unknown 7 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 June 2018.
All research outputs
#20,522,137
of 23,090,520 outputs
Outputs from Frontiers in Physiology
#9,523
of 13,836 outputs
Outputs of similar age
#289,905
of 330,272 outputs
Outputs of similar age from Frontiers in Physiology
#365
of 476 outputs
Altmetric has tracked 23,090,520 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,836 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,272 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 476 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.