↓ Skip to main content

Acetylsalicylic Acid Prevents Intermittent Hypoxia-Induced Vascular Remodeling in a Murine Model of Sleep Apnea

Overview of attention for article published in Frontiers in Physiology, May 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (71st percentile)
  • Good Attention Score compared to outputs of the same age and source (75th percentile)

Mentioned by

twitter
9 X users

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
31 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Acetylsalicylic Acid Prevents Intermittent Hypoxia-Induced Vascular Remodeling in a Murine Model of Sleep Apnea
Published in
Frontiers in Physiology, May 2018
DOI 10.3389/fphys.2018.00600
Pubmed ID
Authors

Monique C. Suarez-Giron, Anabel Castro-Grattoni, Marta Torres, Ramon Farré, Ferran Barbé, Manuel Sánchez-de-la-Torre, David Gozal, Cesar Picado, Josep M. Montserrat, Isaac Almendros

Abstract

Study objectives: Chronic intermittent hypoxia (CIH), a hallmark feature of obstructive sleep apnea (OSA), induces accelerated atherogenesis as well as aorta vascular remodeling. Although the cyclooxygenase (COX) pathway has been proposed to contribute to the cardiovascular consequences of OSA, the potential benefits of a widely employed COX-inhibitor such (acetylsalicylic acid, ASA) on CIH-induced vascular pathology are unknown. Therefore, we hypothesized that a common non-selective COX inhibitor such as ASA would attenuate the aortic remodeling induced by CIH in mice. Methods: 40 wild-type C57/BL6 male mice were randomly allocated to CIH or normoxic exposures (N) and treated with daily doses of ASA or placebo for 6 weeks. At the end of the experiments, intima-media thickness (IMT), elastin disorganization (ED), elastin fragmentation (EF), length between fragmented fiber endpoints (LFF), aortic wall collagen abundance (AC) and mucoid deposition (MD) were assessed. Results: Compared to N, CIH promoted significant increases in IMT (52.58 ± 2.82 μm vs. 46.07 ± 4.18 μm, p < 0.003), ED (25.29 ± 14.60% vs. 4.74 ± 5.37%, p < 0.001), EF (5.80 ± 2.04 vs. 3.06 ± 0.58, p < 0.001), LFF (0.65 ± 0.34% vs. 0.14 ± 0.09%, p < 0.001), AC (3.43 ± 1.52% vs. 1.67 ± 0.67%, p < 0.001) and MD (3.40 ± 2.73 μm2 vs. 1.09 ± 0.72 μm2, p < 0.006). ASA treatment mitigated the CIH-induced alterations in IMT: 44.07 ± 2.73 μm; ED: 10.57 ± 12.89%; EF: 4.63 ± 0.88; LFF: 0.25 ± 0.17% and AC: 0.90 ± 0.13% (p<0.05 for all comparisons). Conclusions: ASA prevents the CIH-induced aortic vascular remodeling, and should therefore be prospectively evaluated as adjuvant treatment in patients with OSA.

X Demographics

X Demographics

The data shown below were collected from the profiles of 9 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 31 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 31 100%

Demographic breakdown

Readers by professional status Count As %
Professor > Associate Professor 5 16%
Student > Ph. D. Student 4 13%
Researcher 3 10%
Student > Master 3 10%
Student > Bachelor 2 6%
Other 6 19%
Unknown 8 26%
Readers by discipline Count As %
Medicine and Dentistry 10 32%
Agricultural and Biological Sciences 5 16%
Nursing and Health Professions 3 10%
Immunology and Microbiology 2 6%
Chemistry 1 3%
Other 1 3%
Unknown 9 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 June 2018.
All research outputs
#5,491,170
of 23,090,520 outputs
Outputs from Frontiers in Physiology
#2,458
of 13,833 outputs
Outputs of similar age
#94,454
of 330,395 outputs
Outputs of similar age from Frontiers in Physiology
#116
of 476 outputs
Altmetric has tracked 23,090,520 research outputs across all sources so far. Compared to these this one has done well and is in the 76th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 13,833 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one has done well, scoring higher than 82% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,395 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.
We're also able to compare this research output to 476 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 75% of its contemporaries.