↓ Skip to main content

A Highly Automated Computational Method for Modeling of Intracranial Aneurysm Hemodynamics

Overview of attention for article published in Frontiers in Physiology, June 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
38 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A Highly Automated Computational Method for Modeling of Intracranial Aneurysm Hemodynamics
Published in
Frontiers in Physiology, June 2018
DOI 10.3389/fphys.2018.00681
Pubmed ID
Authors

Jung-Hee Seo, Parastou Eslami, Justin Caplan, Rafael J. Tamargo, Rajat Mittal

Abstract

Intracranial aneurysms manifest in a vast variety of morphologies and their growth and rupture risk are subject to patient-specific conditions that are coupled with complex, non-linear effects of hemodynamics. Thus, studies that attempt to understand and correlate rupture risk to aneurysm morphology have to incorporate hemodynamics, and at the same time, address a large enough sample size so as to produce reliable statistical correlations. In order to perform accurate hemodynamic simulations for a large number of aneurysm cases, automated methods to convert medical imaging data to simulation-ready configuration with minimal (or no) human intervention are required. In the present study, we develop a highly-automated method based on the immersed boundary method framework to construct computational models from medical imaging data which is the key idea is the direct use of voxelized contrast information from the 3D angiograms to construct a level-set based computational "mask" for the hemodynamic simulation. Appropriate boundary conditions are provided to the mask and the dynamics of blood flow inside the vessels and aneurysm is simulated by solving the Navier-Stokes equations on the Cartesian grid using the sharp-interface immersed boundary method. The present method does not require body conformal surface/volume mesh generation or other intervention for model clean-up. The viability of the proposed method is demonstrated for a number of distinct aneurysms derived from actual, patient-specific data.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 38 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 38 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 18%
Student > Master 7 18%
Student > Bachelor 4 11%
Professor 2 5%
Other 2 5%
Other 4 11%
Unknown 12 32%
Readers by discipline Count As %
Engineering 15 39%
Medicine and Dentistry 6 16%
Computer Science 1 3%
Environmental Science 1 3%
Biochemistry, Genetics and Molecular Biology 1 3%
Other 1 3%
Unknown 13 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 July 2018.
All research outputs
#14,416,163
of 23,090,520 outputs
Outputs from Frontiers in Physiology
#5,361
of 13,833 outputs
Outputs of similar age
#185,791
of 328,349 outputs
Outputs of similar age from Frontiers in Physiology
#237
of 505 outputs
Altmetric has tracked 23,090,520 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,833 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one has gotten more attention than average, scoring higher than 58% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,349 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 505 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.