↓ Skip to main content

Responses of Intestinal Mucosal Barrier Functions of Rats to Simulated Weightlessness

Overview of attention for article published in Frontiers in Physiology, June 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
29 Dimensions

Readers on

mendeley
19 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Responses of Intestinal Mucosal Barrier Functions of Rats to Simulated Weightlessness
Published in
Frontiers in Physiology, June 2018
DOI 10.3389/fphys.2018.00729
Pubmed ID
Authors

Mingliang Jin, Hao Zhang, Ke Zhao, Chunlan Xu, Dongyan Shao, Qingsheng Huang, Junling Shi, Hui Yang

Abstract

Exposure to microgravity or weightlessness leads to various adaptive and pathophysiological alterations in digestive structures and physiology. The current study was carried out to investigate responses of intestinal mucosal barrier functions to simulated weightlessness, by using the hindlimb unloading rats model. Compared with normal controls, simulated weightlessness damaged the intestinal villi and structural integrity of tight junctions, up-regulated the expression of pro-apoptotic protein Bax while down-regulated the expression of anti-apoptotic protein Bcl-2, thus improved the intestinal permeability. It could also influence intestinal microbiota composition with the expansion of Bacteroidetes and decrease of Firmicutes. The predicted metagenomic analysis emphasized significant dysbiosis associated differences in genes involved in membrane transport, cofactors and vitamins metabolism, energy metabolism, and genetic information processing. Moreover, simulated weightlessness could modify the intestinal immune status characterized by the increase of proinflammatory cytokines, decrease of secretory immunoglobulin A, and activation of TLR4/MyD88/NF-κB signaling pathway in ileum. These results indicate the simulated weightlessness disrupts intestinal mucosal barrier functions in animal model. The data also emphasize the necessity of monitoring and regulating astronauts' intestinal health during real space flights to prevent breakdowns in intestinal homeostasis of crewmembers.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 19 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 6 32%
Student > Ph. D. Student 4 21%
Student > Master 2 11%
Professor 2 11%
Lecturer 1 5%
Other 1 5%
Unknown 3 16%
Readers by discipline Count As %
Immunology and Microbiology 5 26%
Biochemistry, Genetics and Molecular Biology 4 21%
Medicine and Dentistry 2 11%
Agricultural and Biological Sciences 2 11%
Nursing and Health Professions 1 5%
Other 2 11%
Unknown 3 16%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 July 2018.
All research outputs
#15,539,088
of 23,094,276 outputs
Outputs from Frontiers in Physiology
#6,789
of 13,838 outputs
Outputs of similar age
#208,873
of 328,571 outputs
Outputs of similar age from Frontiers in Physiology
#280
of 505 outputs
Altmetric has tracked 23,094,276 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,838 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,571 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 505 others from the same source and published within six weeks on either side of this one. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.