↓ Skip to main content

RNA Binding Proteins and Regulation of mRNA Translation in Erythropoiesis

Overview of attention for article published in Frontiers in Physiology, July 2018
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (64th percentile)
  • Good Attention Score compared to outputs of the same age and source (66th percentile)

Mentioned by

twitter
3 X users
patent
1 patent

Citations

dimensions_citation
46 Dimensions

Readers on

mendeley
137 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
RNA Binding Proteins and Regulation of mRNA Translation in Erythropoiesis
Published in
Frontiers in Physiology, July 2018
DOI 10.3389/fphys.2018.00910
Pubmed ID
Authors

Kat S. Moore, Marieke von Lindern

Abstract

Control of gene expression in erythropoiesis has to respond to signals that may emerge from intracellular processes or environmental factors. Control of mRNA translation allows for relatively rapid modulation of protein synthesis from the existing transcriptome. For instance, the protein synthesis rate needs to be reduced when reactive oxygen species or unfolded proteins accumulate in the cells, but also when iron supply is low or when growth factors are lacking in the environment. In addition, regulation of mRNA translation can be important as an additional layer of control on top of gene transcription, in which RNA binding proteins (RBPs) can modify translation of a set of transcripts to the cell's actual protein requirement. The 5' and 3' untranslated regions of mRNA (5'UTR, 3'UTR) contain binding sites for general and sequence specific translation factors. They also contain secondary structures that may hamper scanning of the 5'UTR by translation complexes or may help to recruit translation factors. In addition, the term 5'UTR is not fully correct because many transcripts contain small open reading frames in their 5'UTR that are translated and contribute to regulation of mRNA translation. It is becoming increasingly clear that the transcriptome only partly predicts the proteome. The aim of this review is (i) to summarize how the availability of general translation initiation factors can selectively regulate transcripts because the 5'UTR contains secondary structures or short translated sequences, (ii) to discuss mechanisms that control the length of the mRNA poly(A) tail in relation to mRNA translation, and (iii) to give examples of sequence specific RBPs and their targets. We focused on transcripts and RBPs required for erythropoiesis. Whereas differentiation of erythroblasts to erythrocytes is orchestrated by erythroid transcription factors, the production of erythrocytes needs to respond to the availability of growth factors and nutrients, particularly the availability of iron.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 137 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 137 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 42 31%
Student > Master 20 15%
Other 8 6%
Researcher 8 6%
Student > Doctoral Student 5 4%
Other 10 7%
Unknown 44 32%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 55 40%
Agricultural and Biological Sciences 10 7%
Neuroscience 5 4%
Chemistry 4 3%
Immunology and Microbiology 4 3%
Other 12 9%
Unknown 47 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 July 2019.
All research outputs
#6,896,320
of 23,099,576 outputs
Outputs from Frontiers in Physiology
#3,241
of 13,847 outputs
Outputs of similar age
#117,371
of 329,805 outputs
Outputs of similar age from Frontiers in Physiology
#156
of 479 outputs
Altmetric has tracked 23,099,576 research outputs across all sources so far. This one has received more attention than most of these and is in the 69th percentile.
So far Altmetric has tracked 13,847 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one has done well, scoring higher than 76% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,805 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 64% of its contemporaries.
We're also able to compare this research output to 479 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.