↓ Skip to main content

Differences in Physiological Responses During Rowing and Cycle Ergometry in Elite Male Rowers

Overview of attention for article published in Frontiers in Physiology, July 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (71st percentile)
  • Good Attention Score compared to outputs of the same age and source (74th percentile)

Mentioned by

twitter
9 X users

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
46 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Differences in Physiological Responses During Rowing and Cycle Ergometry in Elite Male Rowers
Published in
Frontiers in Physiology, July 2018
DOI 10.3389/fphys.2018.01010
Pubmed ID
Authors

Joshua R. Lindenthaler, Anthony J. Rice, Nathan G. Versey, Andrew J. McKune, Marijke Welvaert

Abstract

Cycle training is an important training modality of elite rowers. Cycling is the preferred alternative to on-water and ergometer rowing as it provides a reduction in compressive forces on the thoracic cage and upper extremities while still creating a local and central acclimation to endurance training. It is hypothesised, however, that there will be differences in physiological characteristics between Concept II (CII) rowing and WattBike (WB) cycling due to the principle regarding the specificity of training that elite rowers undertake. Understanding these differences will ensure more accurate training prescription when cycling. Twenty international level male rowers, [ V ˙ O2PEAK 5.85 ± 0.58 L.min-1 (CI ± 0.26 L.min-1)] participated in two identical discontinuous incremental exercise tests on a CII rowing and WB cycle ergometer. Ergometer modalities were randomised and counterbalanced among the group and tests occurred 7 days apart. V ˙ O2, V ˙ CO2, V ˙ E(STPD) and HR were significantly higher for every submaximal power output on the CII compared with the WB. Maximal power output on the WB was higher than on the CII [42 ± 33 W (CI ± 14 W) p < 0.000] but V ˙ O2PEAK was similar between modalities. Minute ventilation at maximal exercise was 11 L.min-1 lower on CII than on WB. When data were expressed relative to modality specific V ˙ O2PEAK, power output was consistently lower on the CII as was submaximal V ˙ CO2, RER, RPE, mechanical efficiency and BLa concentration at 75% V ˙ O2PEAK. Across all power outputs and exercise modalities, 77% of the variance in RPE could be explained by the variance in BLa. These results demonstrate that elite rowers can attain similar V ˙ O2PEAK scores regardless of modality. Substantial physiological and metabolic differences are evident between CII rowing and WB cycling when power output is the independent variable with the latter being over 40 W higher. The difference in displayed power output between the ergometer modalities is attributed to differences in mechanical efficiency and a degree of power output not being accounted for on the CII ergometer. Given the lack of consistency between CII and WB power output, other physiological measures, such as HR, are better suited to prescribe WB ergometer sessions.

X Demographics

X Demographics

The data shown below were collected from the profiles of 9 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 46 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 46 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 11 24%
Student > Master 6 13%
Other 2 4%
Student > Ph. D. Student 2 4%
Researcher 2 4%
Other 2 4%
Unknown 21 46%
Readers by discipline Count As %
Sports and Recreations 16 35%
Biochemistry, Genetics and Molecular Biology 2 4%
Nursing and Health Professions 2 4%
Medicine and Dentistry 2 4%
Agricultural and Biological Sciences 1 2%
Other 2 4%
Unknown 21 46%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 February 2021.
All research outputs
#5,485,199
of 23,098,660 outputs
Outputs from Frontiers in Physiology
#2,443
of 13,846 outputs
Outputs of similar age
#92,686
of 329,967 outputs
Outputs of similar age from Frontiers in Physiology
#120
of 480 outputs
Altmetric has tracked 23,098,660 research outputs across all sources so far. Compared to these this one has done well and is in the 76th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 13,846 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one has done well, scoring higher than 82% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,967 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.
We're also able to compare this research output to 480 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.