↓ Skip to main content

Permeation and Rectification in Canonical Transient Receptor Potential-6 (TRPC6) Channels

Overview of attention for article published in Frontiers in Physiology, August 2018
Altmetric Badge

Mentioned by

twitter
3 X users

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
23 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Permeation and Rectification in Canonical Transient Receptor Potential-6 (TRPC6) Channels
Published in
Frontiers in Physiology, August 2018
DOI 10.3389/fphys.2018.01055
Pubmed ID
Authors

Stuart E. Dryer, Eun Young Kim

Abstract

Transient receptor potential-6 channels are widely expressed cation channels that play a role in regulating Ca2+ dynamics, especially during G protein-coupled receptor signaling. The permeation of cations through TRPC6 is complex and the relative permeability to Ca2+ relative to monovalent cations appears to be highly voltage-dependent and is reduced upon membrane depolarization. Many investigators have observed complex current-voltage (I-V) relationships in recordings of TRPC6 channels, which often manifest as flattening of I-V curves between 0 and +40 mV and negative to -60 mV. These features are especially common in recordings from TRPC6 channels expressed in heterologous expression systems. Indeed, it is sometimes argued that marked rectification at both negative and positive membrane potentials is a defining feature of TRPC6, and that recordings in which these features are reduced or absent cannot reflect activity of TRPC6. Here we present a review of the literature to show that complex rectification is not seen in every cell type expressing TRPC6, even when comparing recordings made from the same groups of investigators, or in recordings from what is nominally the same heterologous expression system. Therefore other criteria, such as gene knockout or knockdown, or the use of newly emerging selective blockers, must be used to ascertain that a given current reflects activity of endogenously expressed TRPC6 channels. We also discuss the possibility that complex rectification may not be an intrinsic property of TRPC6 in cells where it is observed, and may instead reflect presence of endogenous substances that cause voltage-dependent inhibition of the channels.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 23 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 23 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 30%
Researcher 3 13%
Student > Doctoral Student 2 9%
Lecturer 1 4%
Professor 1 4%
Other 3 13%
Unknown 6 26%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 26%
Agricultural and Biological Sciences 4 17%
Engineering 2 9%
Neuroscience 2 9%
Business, Management and Accounting 1 4%
Other 1 4%
Unknown 7 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 September 2018.
All research outputs
#17,987,988
of 23,100,534 outputs
Outputs from Frontiers in Physiology
#7,278
of 13,847 outputs
Outputs of similar age
#237,942
of 331,041 outputs
Outputs of similar age from Frontiers in Physiology
#299
of 472 outputs
Altmetric has tracked 23,100,534 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,847 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one is in the 40th percentile – i.e., 40% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 331,041 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 472 others from the same source and published within six weeks on either side of this one. This one is in the 29th percentile – i.e., 29% of its contemporaries scored the same or lower than it.