↓ Skip to main content

Drug Repurposing for Duchenne Muscular Dystrophy: The Monoamine Oxidase B Inhibitor Safinamide Ameliorates the Pathological Phenotype in mdx Mice and in Myogenic Cultures From DMD Patients

Overview of attention for article published in Frontiers in Physiology, August 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (71st percentile)
  • Good Attention Score compared to outputs of the same age and source (73rd percentile)

Mentioned by

twitter
6 X users
patent
1 patent

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
38 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Drug Repurposing for Duchenne Muscular Dystrophy: The Monoamine Oxidase B Inhibitor Safinamide Ameliorates the Pathological Phenotype in mdx Mice and in Myogenic Cultures From DMD Patients
Published in
Frontiers in Physiology, August 2018
DOI 10.3389/fphys.2018.01087
Pubmed ID
Authors

Libero Vitiello, Manuela Marabita, Elisa Sorato, Leonardo Nogara, Giada Forestan, Vincent Mouly, Leonardo Salviati, Manuel Acosta, Bert Blaauw, Marcella Canton

Abstract

Oxidative stress and mitochondrial dysfunction play a crucial role in the pathophysiology of muscular dystrophies. We previously reported that the mitochondrial enzyme monoamine oxidase (MAO) is a relevant source of reactive oxygen species (ROS) not only in murine models of muscular dystrophy, in which it directly contributes to contractile impairment, but also in muscle cells from collagen VI-deficient patients. Here, we now assessed the efficacy of a novel MAO-B inhibitor, safinamide, using in vivo and in vitro models of Duchenne muscular dystrophy (DMD). Specifically, we found that administration of safinamide in 3-month-old mdx mice reduced myofiber damage and oxidative stress and improved muscle functionality. In vitro studies with myogenic cultures from mdx mice and DMD patients showed that even cultured dystrophic myoblasts were more susceptible to oxidative stress than matching cells from healthy donors. Indeed, upon exposure to the MAO substrate tyramine or to hydrogen peroxide, DMD muscle cells displayed a rise in ROS levels and a consequent mitochondrial depolarization. Remarkably, both phenotypes normalized when cultures were treated with safinamide. Given that safinamide is already in clinical use for neurological disorders, our findings could pave the way toward a promising translation into clinical trials for DMD patients as a classic case of drug repurposing.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 38 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 38 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 26%
Student > Ph. D. Student 5 13%
Professor 3 8%
Student > Bachelor 3 8%
Student > Master 3 8%
Other 3 8%
Unknown 11 29%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 11 29%
Neuroscience 4 11%
Agricultural and Biological Sciences 3 8%
Chemistry 2 5%
Medicine and Dentistry 2 5%
Other 4 11%
Unknown 12 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 December 2019.
All research outputs
#5,503,166
of 23,100,534 outputs
Outputs from Frontiers in Physiology
#2,466
of 13,847 outputs
Outputs of similar age
#93,525
of 331,095 outputs
Outputs of similar age from Frontiers in Physiology
#129
of 487 outputs
Altmetric has tracked 23,100,534 research outputs across all sources so far. Compared to these this one has done well and is in the 76th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 13,847 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one has done well, scoring higher than 82% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 331,095 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.
We're also able to compare this research output to 487 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 73% of its contemporaries.