↓ Skip to main content

Circulating Small Non-coding RNAs as Biomarkers for Recovery After Exhaustive or Repetitive Exercise

Overview of attention for article published in Frontiers in Physiology, August 2018
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (62nd percentile)
  • Good Attention Score compared to outputs of the same age and source (66th percentile)

Mentioned by

twitter
6 X users
facebook
1 Facebook page

Citations

dimensions_citation
25 Dimensions

Readers on

mendeley
67 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Circulating Small Non-coding RNAs as Biomarkers for Recovery After Exhaustive or Repetitive Exercise
Published in
Frontiers in Physiology, August 2018
DOI 10.3389/fphys.2018.01136
Pubmed ID
Authors

Kjell E. J. Håkansson, Ove Sollie, Karin H. Simons, Paul H. A. Quax, Jørgen Jensen, A. Yaël Nossent

Abstract

Circulating microRNAs have proven to be reliable biomarkers, due to their high stability, both in vivo in the circulation, and ex vivo during sample preparation and storage. Small nucleolar RNAs (snoRNAs) are a different type of small non-coding RNAs that can also be reliably measured in plasma, but have only been studied sporadically. In this study, we aimed to identify RNA-biomarkers that can distinguish between different exercise regimes and that entail clues about muscle repair and recovery after prolonged exhaustive endurance exercise. We compared plasma microRNA profiles between two cohorts of elite cyclists, subjected to two different types of exercise regimes, as well as a cohort of patients with peripheral artery disease (PAD) that were scheduled to undergo lower limb amputation, due to critical limb ischemia. In elite athletes, muscle tissue recovers quickly even after exhaustive exercise, whereas in PAD patients, recovery is completely impaired. Furthermore, we measured levels of a specific group of snoRNAs in the plasma of both elite cyclists and PAD patients. Using a multiplex qPCR screening, we detected a total of 179 microRNAs overall, of which, on average, 161 microRNAs were detected per sample. However, only 30 microRNAs were consistently expressed in all samples. Of these, two microRNAs, miR-29a-3p and miR193a-5p, that responded differently two different types of exercise, namely exhaustive exercise and non-exhaustive endurance exercise. Using individual rt/qPCR, we also identified a snoRNA, SNORD114.1, which was significantly upregulated in plasma in response to endurance exercise. Furthermore, two microRNAs, miR-29a-3p and miR-495-3p, were significantly differentially expressed in athletes compared to PAD patients, but only following exercise. We suggest that these two microRNAs could function as markers of impaired muscle repair and recovery. In conclusion, microRNAs miR-29a-3p and miR-193a-5p may help us distinguish between repeated exhaustive and non-exhaustive endurance exercise. MicroRNA miR-29a-3p, as well as miR-495-3p, may further mark impaired muscle recovery in patients with severe critical limb ischemia. Furthermore, we showed for the first time that a circulating snoRNA, SNORD114.1, is regulated in response to exercise and may be used as biomarker.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 67 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 67 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 11 16%
Student > Ph. D. Student 9 13%
Student > Bachelor 8 12%
Student > Master 5 7%
Professor > Associate Professor 4 6%
Other 8 12%
Unknown 22 33%
Readers by discipline Count As %
Medicine and Dentistry 13 19%
Biochemistry, Genetics and Molecular Biology 11 16%
Sports and Recreations 6 9%
Agricultural and Biological Sciences 4 6%
Veterinary Science and Veterinary Medicine 2 3%
Other 8 12%
Unknown 23 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 February 2019.
All research outputs
#7,236,768
of 23,100,534 outputs
Outputs from Frontiers in Physiology
#3,452
of 13,847 outputs
Outputs of similar age
#124,995
of 334,071 outputs
Outputs of similar age from Frontiers in Physiology
#158
of 482 outputs
Altmetric has tracked 23,100,534 research outputs across all sources so far. This one has received more attention than most of these and is in the 68th percentile.
So far Altmetric has tracked 13,847 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one has gotten more attention than average, scoring higher than 74% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 334,071 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 62% of its contemporaries.
We're also able to compare this research output to 482 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.