↓ Skip to main content

Muscle Free Fatty-Acid Uptake Associates to Mechanical Efficiency During Exercise in Humans

Overview of attention for article published in Frontiers in Physiology, August 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (79th percentile)
  • High Attention Score compared to outputs of the same age and source (81st percentile)

Mentioned by

twitter
15 X users

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
22 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Muscle Free Fatty-Acid Uptake Associates to Mechanical Efficiency During Exercise in Humans
Published in
Frontiers in Physiology, August 2018
DOI 10.3389/fphys.2018.01171
Pubmed ID
Authors

Marko S. Laaksonen, Heikki Kyröläinen, Jukka Kemppainen, Juhani Knuuti, Kari K. Kalliokoski

Abstract

Intrinsic factors related to muscle metabolism may explain the differences in mechanical efficiency (ME) during exercise. Therefore, this study aimed to investigate the relationship between muscle metabolism and ME. Totally 17 healthy recreationally active male participants were recruited and divided into efficient (EF; n = 8) and inefficient (IE; n = 9) groups, which were matched for age (mean ± SD 24 ± 2 vs. 23 ± 2 years), BMI (23 ± 1 vs. 23 ± 2 kg m-2), physical activity levels (3.4 ± 1.0 vs. 4.1 ± 1.0 sessions/week), and V ˙ O2peak (53 ± 3 vs. 52 ± 3 mL kg-1 min-1), respectively, but differed for ME at 45% of V ˙ O2peak intensity during submaximal bicycle ergometer test (EF 20.5 ± 3.5 vs. IE 15.4 ± 0.8%, P < 0.001). Using positron emission tomography, muscle blood flow (BF) and uptakes of oxygen (m V ˙ O2), fatty acids (FAU) and glucose (GU) were measured during dynamic submaximal knee-extension exercise. Workload-normalized BF (EF 35 ± 14 vs. IE 34 ± 11 mL 100 g-1 min-1, P = 0.896), m V ˙ O2 (EF 4.1 ± 1.2 vs. IE 3.9 ± 1.2 mL 100 g-1 min-1, P = 0.808), and GU (EF 3.1 ± 1.8 vs. IE 2.6 ± 2.3 μmol 100 g-1 min-1, P = 0.641) as well as the delivery of oxygen, glucose, and FAU, as well as respiratory quotient were not different between the groups. However, FAU was significantly higher in EF than IE (3.1 ± 1.7 vs. 1.7 ± 0.6 μmol 100 g-1 min-1, P = 0.047) and it also correlated with ME (r = 0.56, P = 0.024) in the entire study group. EF group also demonstrated higher use of plasma FAU than IE, but no differences in use of plasma glucose and intramuscular energy sources were observed between the groups. These findings suggest that the effective use of plasma FAU is an important determinant of ME during exercise.

X Demographics

X Demographics

The data shown below were collected from the profiles of 15 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 22 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 3 14%
Researcher 3 14%
Student > Master 3 14%
Student > Ph. D. Student 2 9%
Professor 1 5%
Other 2 9%
Unknown 8 36%
Readers by discipline Count As %
Medicine and Dentistry 5 23%
Sports and Recreations 4 18%
Biochemistry, Genetics and Molecular Biology 2 9%
Nursing and Health Professions 1 5%
Unknown 10 45%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 October 2018.
All research outputs
#3,243,536
of 23,098,660 outputs
Outputs from Frontiers in Physiology
#1,729
of 13,846 outputs
Outputs of similar age
#67,175
of 333,759 outputs
Outputs of similar age from Frontiers in Physiology
#87
of 482 outputs
Altmetric has tracked 23,098,660 research outputs across all sources so far. Compared to these this one has done well and is in the 85th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 13,846 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one has done well, scoring higher than 87% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 333,759 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 79% of its contemporaries.
We're also able to compare this research output to 482 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 81% of its contemporaries.