↓ Skip to main content

Defining the Progression of Diabetic Cardiomyopathy in a Mouse Model of Type 1 Diabetes

Overview of attention for article published in Frontiers in Physiology, February 2020
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (70th percentile)
  • High Attention Score compared to outputs of the same age and source (84th percentile)

Mentioned by

twitter
7 X users

Citations

dimensions_citation
33 Dimensions

Readers on

mendeley
52 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Defining the Progression of Diabetic Cardiomyopathy in a Mouse Model of Type 1 Diabetes
Published in
Frontiers in Physiology, February 2020
DOI 10.3389/fphys.2020.00124
Pubmed ID
Authors

Miles J. De Blasio, Nguyen Huynh, Minh Deo, Leslie E. Dubrana, Jesse Walsh, Andrew Willis, Darnel Prakoso, Helen Kiriazis, Daniel G. Donner, John C. Chatham, Rebecca H. Ritchie

Abstract

The incidence of diabetes and its association with increased cardiovascular disease risk represents a major health issue worldwide. Diabetes-induced hyperglycemia is implicated as a central driver of responses in the diabetic heart such as cardiomyocyte hypertrophy, fibrosis, and oxidative stress, termed diabetic cardiomyopathy. The onset of these responses in the setting of diabetes has not been studied to date. This study aimed to determine the time course of development of diabetic cardiomyopathy in a model of type 1 diabetes (T1D) in vivo. Diabetes was induced in 6-week-old male FVB/N mice via streptozotocin (55 mg/kg i.p. for 5 days; controls received citrate vehicle). At 2, 4, 8, 12, and 16 weeks of untreated diabetes, left ventricular (LV) function was assessed by echocardiography before post-mortem quantification of markers of LV cardiomyocyte hypertrophy, collagen deposition, DNA fragmentation, and changes in components of the hexosamine biosynthesis pathway (HBP) were assessed. Blood glucose and HbA1c levels were elevated by 2 weeks of diabetes. LV and muscle (gastrocnemius) weights were reduced from 8 weeks, whereas liver and kidney weights were increased from 2 and 4 weeks of diabetes, respectively. LV diastolic function declined with diabetes progression, demonstrated by a reduction in E/A ratio from 4 weeks of diabetes, and an increase in peak A-wave amplitude, deceleration time, and isovolumic relaxation time (IVRT) from 4-8 weeks of diabetes. Systemic and local inflammation (TNFα, IL-1β, CD68) were increased with diabetes. The cardiomyocyte hypertrophic marker Nppa was increased from 8 weeks of diabetes while β-myosin heavy chain was increased earlier, from 2 weeks of diabetes. LV fibrosis (picrosirius red; Ctgf and Tgf-β gene expression) and DNA fragmentation (a marker of cardiomyocyte apoptosis) increased with diabetes progression. LV Nox2 and Cd36 expression were elevated after 16 weeks of diabetes. Markers of the LV HBP (Ogt, Oga, Gfat1/2 gene expression), and protein abundance of OGT and total O-GlcNAcylation, were increased by 16 weeks of diabetes. This is the first study to define the progression of cardiac markers contributing to the development of diabetic cardiomyopathy in a mouse model of T1D, confirming multiple pathways contribute to disease progression at various time points.

X Demographics

X Demographics

The data shown below were collected from the profiles of 7 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 52 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 52 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 8 15%
Student > Postgraduate 5 10%
Student > Ph. D. Student 5 10%
Student > Bachelor 4 8%
Student > Doctoral Student 4 8%
Other 8 15%
Unknown 18 35%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 10 19%
Medicine and Dentistry 9 17%
Unspecified 4 8%
Pharmacology, Toxicology and Pharmaceutical Science 3 6%
Agricultural and Biological Sciences 3 6%
Other 5 10%
Unknown 18 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 March 2020.
All research outputs
#5,683,678
of 23,195,584 outputs
Outputs from Frontiers in Physiology
#2,580
of 13,955 outputs
Outputs of similar age
#104,689
of 360,964 outputs
Outputs of similar age from Frontiers in Physiology
#57
of 375 outputs
Altmetric has tracked 23,195,584 research outputs across all sources so far. Compared to these this one has done well and is in the 75th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 13,955 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one has done well, scoring higher than 81% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 360,964 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.
We're also able to compare this research output to 375 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 84% of its contemporaries.