↓ Skip to main content

Exhaustive Exercise and Post-exercise Protein Plus Carbohydrate Supplementation Affect Plasma and Urine Concentrations of Sulfur Amino Acids, the Ratio of Methionine to Homocysteine and Glutathione…

Overview of attention for article published in Frontiers in Physiology, December 2020
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (66th percentile)
  • Good Attention Score compared to outputs of the same age and source (72nd percentile)

Mentioned by

twitter
7 X users

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
36 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Exhaustive Exercise and Post-exercise Protein Plus Carbohydrate Supplementation Affect Plasma and Urine Concentrations of Sulfur Amino Acids, the Ratio of Methionine to Homocysteine and Glutathione in Elite Male Cyclists
Published in
Frontiers in Physiology, December 2020
DOI 10.3389/fphys.2020.609335
Pubmed ID
Authors

Thomas Olsen, Ove Sollie, Eha Nurk, Cheryl Turner, Fredrik Jernerén, John L. Ivy, Kathrine J. Vinknes, Matthieu Clauss, Helga Refsum, Jørgen Jensen

Abstract

Plasma and tissue sulfur amino acid (SAA) availability are crucial for intracellular methylation reactions and cellular antioxidant defense, which are important processes during exercise and in recovery. In this randomized, controlled crossover trial among eight elite male cyclists, we explored the effect of exhaustive exercise and post-exercise supplementation with carbohydrates and protein (CHO+PROT) vs. carbohydrates (CHO) on plasma and urine SAAs, a potential new marker of methylation capacity (methionine/total homocysteine ratio [Met/tHcy]) and related metabolites. The purpose of the study was to further explore the role of SAAs in exercise and recovery. Athletes cycled to exhaustion and consumed supplements immediately after and in 30 min intervals for 120 min post-exercise. After ~18 h recovery, performance was tested in a time trial in which the CHO+PROT group cycled 8.5% faster compared to the CHO group (41:53 ± 1:51 vs. 45:26 ± 1:32 min, p < 0.05). Plasma methionine decreased by ~23% during exhaustive exercise. Two h post-exercise, further decline in methionine had occured by ~55% in the CHO group vs. ~33% in the CHO+PROT group (pgroup × time < 0.001). The Met/tHcy ratio decreased by ~33% during exhaustive exercise, and by ~54% in the CHO group vs. ~27% in the CHO+PROT group (pgroup × time < 0.001) post-exercise. Plasma cystathionine increased by ~72% in the CHO group and ~282% in the CHO+PROT group post-exercise (pgroup × time < 0.001). Plasma total cysteine, taurine and total glutathione increased by 12% (p = 0.03), 85% (p < 0.001) and 17% (p = 0.02), respectively during exhaustive exercise. Using publicly available transcriptomic data, we report upregulated transcript levels of skeletal muscle SLC7A5 (log2 fold-change: 0.45, FDR:1.8e-07) and MAT2A (log2 fold-change: 0.38, FDR: 3.4e-0.7) after acute exercise. Our results show that exercise acutely lowers plasma methionine and the Met/tHcy ratio. This response was attenuated in the CHO+PROT compared to the CHO group in the early recovery phase potentially affecting methylation capacity and contributing to improved recovery.

X Demographics

X Demographics

The data shown below were collected from the profiles of 7 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 36 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 36 100%

Demographic breakdown

Readers by professional status Count As %
Student > Postgraduate 3 8%
Student > Master 3 8%
Other 2 6%
Unspecified 2 6%
Student > Ph. D. Student 2 6%
Other 5 14%
Unknown 19 53%
Readers by discipline Count As %
Medicine and Dentistry 5 14%
Nursing and Health Professions 2 6%
Unspecified 2 6%
Sports and Recreations 2 6%
Business, Management and Accounting 1 3%
Other 4 11%
Unknown 20 56%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 July 2024.
All research outputs
#7,661,337
of 26,371,446 outputs
Outputs from Frontiers in Physiology
#3,641
of 15,831 outputs
Outputs of similar age
#177,206
of 533,314 outputs
Outputs of similar age from Frontiers in Physiology
#120
of 433 outputs
Altmetric has tracked 26,371,446 research outputs across all sources so far. This one has received more attention than most of these and is in the 70th percentile.
So far Altmetric has tracked 15,831 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one has done well, scoring higher than 76% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 533,314 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.
We're also able to compare this research output to 433 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.