↓ Skip to main content

Zinc allocation and re-allocation in rice

Overview of attention for article published in Frontiers in Plant Science, January 2014
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
43 Dimensions

Readers on

mendeley
75 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Zinc allocation and re-allocation in rice
Published in
Frontiers in Plant Science, January 2014
DOI 10.3389/fpls.2014.00008
Pubmed ID
Authors

Tjeerd Jan Stomph, Wen Jiang, Peter E. L. Van Der Putten, Paul C. Struik

Abstract

Aims: Agronomy and breeding actively search for options to enhance cereal grain Zn density. Quantifying internal (re-)allocation of Zn as affected by soil and crop management or genotype is crucial. We present experiments supporting the development of a conceptual model of whole plant Zn allocation and re-allocation in rice. Methods: Two solution culture experiments using (70)Zn applications at different times during crop development and an experiment on within-grain distribution of Zn are reported. In addition, results from two earlier published experiments are re-analyzed and re-interpreted. Results: A budget analysis showed that plant zinc accumulation during grain filling was larger than zinc allocation to the grains. Isotope data showed that zinc taken up during grain filling was only partly transported directly to the grains and partly allocated to the leaves. Zinc taken up during grain filling and allocated to the leaves replaced zinc re-allocated from leaves to grains. Within the grains, no major transport barrier was observed between vascular tissue and endosperm. At low tissue Zn concentrations, rice plants maintained concentrations of about 20 mg Zn kg(-1) dry matter in leaf blades and reproductive tissues, but let Zn concentrations in stems, sheath, and roots drop below this level. When plant zinc concentrations increased, Zn levels in leaf blades and reproductive tissues only showed a moderate increase while Zn levels in stems, roots, and sheaths increased much more and in that order. Conclusions: In rice, the major barrier to enhanced zinc allocation towards grains is between stem and reproductive tissues. Enhancing root to shoot transfer will not contribute proportionally to grain zinc enhancement.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 75 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
France 1 1%
Unknown 74 99%

Demographic breakdown

Readers by professional status Count As %
Researcher 15 20%
Student > Ph. D. Student 12 16%
Student > Master 11 15%
Student > Doctoral Student 5 7%
Other 4 5%
Other 11 15%
Unknown 17 23%
Readers by discipline Count As %
Agricultural and Biological Sciences 39 52%
Environmental Science 5 7%
Biochemistry, Genetics and Molecular Biology 4 5%
Computer Science 3 4%
Medicine and Dentistry 2 3%
Other 1 1%
Unknown 21 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 January 2014.
All research outputs
#20,217,843
of 22,741,406 outputs
Outputs from Frontiers in Plant Science
#15,918
of 20,024 outputs
Outputs of similar age
#264,742
of 305,211 outputs
Outputs of similar age from Frontiers in Plant Science
#43
of 86 outputs
Altmetric has tracked 22,741,406 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,024 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 305,211 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 86 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.