↓ Skip to main content

Drying without senescence in resurrection plants

Overview of attention for article published in Frontiers in Plant Science, January 2014
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age and source (62nd percentile)

Mentioned by

twitter
1 X user

Citations

dimensions_citation
90 Dimensions

Readers on

mendeley
144 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Drying without senescence in resurrection plants
Published in
Frontiers in Plant Science, January 2014
DOI 10.3389/fpls.2014.00036
Pubmed ID
Authors

Cara A. Griffiths, Donald F. Gaff, Alan D. Neale

Abstract

Research into extreme drought tolerance in resurrection plants using species such as Craterostigma plantagineum, C. wilmsii, Xerophyta humilis, Tortula ruralis, and Sporobolus stapfianus has provided some insight into the desiccation tolerance mechanisms utilized by these plants to allow them to persist under extremely adverse environmental conditions. Some of the mechanisms used to ensure cellular preservation during severe dehydration appear to be peculiar to resurrection plants. Apart from the ability to preserve vital cellular components during drying and rehydration, such mechanisms include the ability to down-regulate growth-related metabolism rapidly in response to changes in water availability, and the ability to inhibit dehydration-induced senescence programs enabling reconstitution of photosynthetic capacity quickly following a rainfall event. Extensive research on the molecular mechanism of leaf senescence in non-resurrection plants has revealed a multi-layered regulatory network operates to control programed cell death pathways. However, very little is known about the molecular mechanisms that resurrection plants employ to avoid undergoing drought-related senescence during the desiccation process. To survive desiccation, dehydration in the perennial resurrection grass S. stapfianus must proceed slowly over a period of 7 days or more. Leaves detached from the plant before 60% relative water content (RWC) is attained are desiccation-sensitive indicating that desiccation tolerance is conferred in vegetative tissue of S. stapfianus when the leaf RWC has declined to 60%. Whilst some older leaves remaining attached to the plant during dehydration will senesce, suggesting dehydration-induced senescence may be influenced by leaf age or the rate of dehydration in individual leaves, the majority of leaves do not senesce. Rather these leaves dehydrate to air-dryness and revive fully following rehydration. Hence it seems likely that there are genes expressed in younger leaf tissues of resurrection plants that enable suppression of drought-related senescence pathways. As very few studies have directly addressed this phenomenon, this review aims to discuss current literature surrounding the activation and suppression of senescence pathways and how these pathways may differ in resurrection plants.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 144 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Chile 1 <1%
Portugal 1 <1%
South Africa 1 <1%
Brazil 1 <1%
Unknown 140 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 33 23%
Researcher 27 19%
Student > Master 23 16%
Student > Bachelor 11 8%
Student > Doctoral Student 8 6%
Other 24 17%
Unknown 18 13%
Readers by discipline Count As %
Agricultural and Biological Sciences 91 63%
Biochemistry, Genetics and Molecular Biology 18 13%
Computer Science 3 2%
Medicine and Dentistry 3 2%
Pharmacology, Toxicology and Pharmaceutical Science 1 <1%
Other 4 3%
Unknown 24 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 March 2014.
All research outputs
#19,916,939
of 25,371,288 outputs
Outputs from Frontiers in Plant Science
#14,352
of 24,593 outputs
Outputs of similar age
#233,328
of 319,290 outputs
Outputs of similar age from Frontiers in Plant Science
#32
of 85 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,593 research outputs from this source. They receive a mean Attention Score of 3.9. This one is in the 41st percentile – i.e., 41% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 319,290 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 85 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 62% of its contemporaries.