↓ Skip to main content

The ER quality control and ER associated degradation machineries are vital for viral pathogenesis

Overview of attention for article published in Frontiers in Plant Science, March 2014
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
45 Dimensions

Readers on

mendeley
78 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The ER quality control and ER associated degradation machineries are vital for viral pathogenesis
Published in
Frontiers in Plant Science, March 2014
DOI 10.3389/fpls.2014.00066
Pubmed ID
Authors

Jeanmarie Verchot

Abstract

The endoplasmic reticulum (ER) is central to protein production and membrane lipid synthesis. The unfolded protein response (UPR) supports cellular metabolism by ensuring protein quality control in the ER. Most positive strand RNA viruses cause extensive remodeling of membranes and require active membrane synthesis to promote infection. How viruses interact with the cellular machinery controlling membrane metabolism is largely unknown. Furthermore, there is mounting data pointing to the importance of the UPR and ER associated degradation (ERAD) machineries in viral pathogenesis in eukaryotes emerging topic. For many viruses, the UPR is an early event that is essential for persistent infection and benefits virus replication. In addition, many viruses are reported to commandeer ER resident chaperones to contribute to virus replication and intercellular movement. In particular, calreticulin, the ubiquitin machinery, and the 26S proteasome are most commonly identified components of the UPR and ERAD machinery that also regulate virus infection. In addition, researchers have noted a link between UPR and autophagy. It is well accepted that positive strand RNA viruses use autophagic membranes as scaffolds to support replication and assembly. However this topic has yet to be explored using plant viruses. The goal of research on this topic is to uncover how viruses interact with this ER-related machinery and to use this information for designing novel strategies to boost immune responses to virus infection.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 78 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
India 1 1%
Unknown 77 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 14 18%
Researcher 14 18%
Student > Bachelor 11 14%
Student > Doctoral Student 7 9%
Student > Master 7 9%
Other 15 19%
Unknown 10 13%
Readers by discipline Count As %
Agricultural and Biological Sciences 44 56%
Biochemistry, Genetics and Molecular Biology 16 21%
Immunology and Microbiology 2 3%
Social Sciences 1 1%
Chemistry 1 1%
Other 0 0%
Unknown 14 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 March 2014.
All research outputs
#20,223,099
of 22,747,498 outputs
Outputs from Frontiers in Plant Science
#15,937
of 20,041 outputs
Outputs of similar age
#189,331
of 220,818 outputs
Outputs of similar age from Frontiers in Plant Science
#36
of 81 outputs
Altmetric has tracked 22,747,498 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,041 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 220,818 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 81 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.