↓ Skip to main content

Regulation of root hair cell differentiation by R3 MYB transcription factors in tomato and Arabidopsis

Overview of attention for article published in Frontiers in Plant Science, March 2014
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
34 Dimensions

Readers on

mendeley
55 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Regulation of root hair cell differentiation by R3 MYB transcription factors in tomato and Arabidopsis
Published in
Frontiers in Plant Science, March 2014
DOI 10.3389/fpls.2014.00091
Pubmed ID
Authors

Rumi Tominaga-Wada, Takuji Wada

Abstract

CAPRICE (CPC) encodes a small protein with an R3 MYB motif and regulates root hair and trichome cell differentiation in Arabidopsis thaliana. Six additional CPC-like MYB proteins including TRIPTYCHON (TRY), ENHANCER OF TRY AND CPC1 (ETC1), ENHANCER OF TRY AND CPC2 (ETC2), ENHANCER OF TRY AND CPC3/CPC-LIKE MYB3 (ETC3/CPL3), TRICHOMELESS1 (TCL1), and TRICHOMELESS2/CPC-LIKE MYB4 (TCL2/CPL4) also have the ability to regulate root hair and/or trichome cell differentiation in Arabidopsis. In this review, we describe our latest findings on how CPC-like MYB transcription factors regulate root hair cell differentiation. Recently, we identified the tomato SlTRY gene as an ortholog of the Arabidopsis TRY gene. Transgenic Arabidopsis plants harboring SlTRY produced more root hairs, a phenotype similar to that of 35S::CPC transgenic plants. CPC is also known to be involved in anthocyanin biosynthesis. Anthocyanin accumulation was repressed in the SlTRY transgenic plants, suggesting that SlTRY can also influence anthocyanin biosynthesis. We concluded that tomato and Arabidopsis partially use similar transcription factors for root hair cell differentiation, and that a CPC-like R3 MYB may be a key common regulator of plant root-hair development.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 55 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
China 1 2%
Unknown 54 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 17 31%
Researcher 11 20%
Student > Bachelor 6 11%
Student > Master 4 7%
Student > Postgraduate 3 5%
Other 6 11%
Unknown 8 15%
Readers by discipline Count As %
Agricultural and Biological Sciences 29 53%
Biochemistry, Genetics and Molecular Biology 13 24%
Business, Management and Accounting 1 2%
Chemistry 1 2%
Engineering 1 2%
Other 0 0%
Unknown 10 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 March 2014.
All research outputs
#20,223,099
of 22,747,498 outputs
Outputs from Frontiers in Plant Science
#15,937
of 20,045 outputs
Outputs of similar age
#189,818
of 221,235 outputs
Outputs of similar age from Frontiers in Plant Science
#36
of 81 outputs
Altmetric has tracked 22,747,498 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,045 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 221,235 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 81 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.