↓ Skip to main content

An update: improvements in imaging perfluorocarbon-mounted plant leaves with implications for studies of plant pathology, physiology, development and cell biology

Overview of attention for article published in Frontiers in Plant Science, April 2014
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (51st percentile)
  • High Attention Score compared to outputs of the same age and source (81st percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
58 Dimensions

Readers on

mendeley
96 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
An update: improvements in imaging perfluorocarbon-mounted plant leaves with implications for studies of plant pathology, physiology, development and cell biology
Published in
Frontiers in Plant Science, April 2014
DOI 10.3389/fpls.2014.00140
Pubmed ID
Authors

George R. Littlejohn, Jessica C. Mansfield, Jacqueline T. Christmas, Eleanor Witterick, Mark D. Fricker, Murray R. Grant, Nicholas Smirnoff, Richard M. Everson, Julian Moger, John Love

Abstract

Plant leaves are optically complex, which makes them difficult to image by light microscopy. Careful sample preparation is therefore required to enable researchers to maximize the information gained from advances in fluorescent protein labeling, cell dyes and innovations in microscope technologies and techniques. We have previously shown that mounting leaves in the non-toxic, non-fluorescent perfluorocarbon (PFC), perfluorodecalin (PFD) enhances the optical properties of the leaf with minimal impact on physiology. Here, we assess the use of the PFCs, PFD, and perfluoroperhydrophenanthrene (PP11) for in vivo plant leaf imaging using four advanced modes of microscopy: laser scanning confocal microscopy (LSCM), two-photon fluorescence microscopy, second harmonic generation microscopy, and stimulated Raman scattering (SRS) microscopy. For every mode of imaging tested, we observed an improved signal when leaves were mounted in PFD or in PP11, compared to mounting the samples in water. Using an image analysis technique based on autocorrelation to quantitatively assess LSCM image deterioration with depth, we show that PP11 outperformed PFD as a mounting medium by enabling the acquisition of clearer images deeper into the tissue. In addition, we show that SRS microscopy can be used to image PFCs directly in the mesophyll and thereby easily delimit the "negative space" within a leaf, which may have important implications for studies of leaf development. Direct comparison of on and off resonance SRS micrographs show that PFCs do not to form intracellular aggregates in live plants. We conclude that the application of PFCs as mounting media substantially increases advanced microscopy image quality of living mesophyll and leaf vascular bundle cells.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 96 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 1%
United States 1 1%
France 1 1%
Unknown 93 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 27 28%
Researcher 25 26%
Student > Master 9 9%
Student > Bachelor 8 8%
Student > Doctoral Student 4 4%
Other 13 14%
Unknown 10 10%
Readers by discipline Count As %
Agricultural and Biological Sciences 46 48%
Biochemistry, Genetics and Molecular Biology 11 11%
Physics and Astronomy 6 6%
Engineering 5 5%
Chemistry 3 3%
Other 8 8%
Unknown 17 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 July 2014.
All research outputs
#13,173,958
of 22,751,628 outputs
Outputs from Frontiers in Plant Science
#5,994
of 20,052 outputs
Outputs of similar age
#109,437
of 227,078 outputs
Outputs of similar age from Frontiers in Plant Science
#27
of 151 outputs
Altmetric has tracked 22,751,628 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,052 research outputs from this source. They receive a mean Attention Score of 4.0. This one has gotten more attention than average, scoring higher than 68% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 227,078 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.
We're also able to compare this research output to 151 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 81% of its contemporaries.