↓ Skip to main content

Integrating omic approaches for abiotic stress tolerance in soybean

Overview of attention for article published in Frontiers in Plant Science, June 2014
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
241 Dimensions

Readers on

mendeley
330 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Integrating omic approaches for abiotic stress tolerance in soybean
Published in
Frontiers in Plant Science, June 2014
DOI 10.3389/fpls.2014.00244
Pubmed ID
Authors

Rupesh Deshmukh, Humira Sonah, Gunvant Patil, Wei Chen, Silvas Prince, Raymond Mutava, Tri Vuong, Babu Valliyodan, Henry T. Nguyen

Abstract

Soybean production is greatly influenced by abiotic stresses imposed by environmental factors such as drought, water submergence, salt, and heavy metals. A thorough understanding of plant response to abiotic stress at the molecular level is a prerequisite for its effective management. The molecular mechanism of stress tolerance is complex and requires information at the omic level to understand it effectively. In this regard, enormous progress has been made in the omics field in the areas of genomics, transcriptomics, and proteomics. The emerging field of ionomics is also being employed for investigating abiotic stress tolerance in soybean. Omic approaches generate a huge amount of data, and adequate advancements in computational tools have been achieved for effective analysis. However, the integration of omic-scale information to address complex genetics and physiological questions is still a challenge. In this review, we have described advances in omic tools in the view of conventional and modern approaches being used to dissect abiotic stress tolerance in soybean. Emphasis was given to approaches such as quantitative trait loci (QTL) mapping, genome-wide association studies (GWAS), and genomic selection (GS). Comparative genomics and candidate gene approaches are also discussed considering identification of potential genomic loci, genes, and biochemical pathways involved in stress tolerance mechanism in soybean. This review also provides a comprehensive catalog of available online omic resources for soybean and its effective utilization. We have also addressed the significance of phenomics in the integrated approaches and recognized high-throughput multi-dimensional phenotyping as a major limiting factor for the improvement of abiotic stress tolerance in soybean.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 330 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
France 2 <1%
Canada 2 <1%
Paraguay 1 <1%
Spain 1 <1%
Japan 1 <1%
United States 1 <1%
Unknown 322 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 65 20%
Student > Ph. D. Student 51 15%
Student > Master 33 10%
Student > Bachelor 25 8%
Professor > Associate Professor 23 7%
Other 59 18%
Unknown 74 22%
Readers by discipline Count As %
Agricultural and Biological Sciences 171 52%
Biochemistry, Genetics and Molecular Biology 28 8%
Engineering 8 2%
Environmental Science 8 2%
Medicine and Dentistry 6 2%
Other 20 6%
Unknown 89 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 June 2014.
All research outputs
#22,759,802
of 25,374,917 outputs
Outputs from Frontiers in Plant Science
#19,714
of 24,598 outputs
Outputs of similar age
#208,604
of 242,009 outputs
Outputs of similar age from Frontiers in Plant Science
#109
of 171 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,598 research outputs from this source. They receive a mean Attention Score of 3.9. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 242,009 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 171 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.