↓ Skip to main content

Transport, ultrastructural localization, and distribution of chemical forms of lead in radish (Raphanus sativus L.)

Overview of attention for article published in Frontiers in Plant Science, May 2015
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
59 Dimensions

Readers on

mendeley
44 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Transport, ultrastructural localization, and distribution of chemical forms of lead in radish (Raphanus sativus L.)
Published in
Frontiers in Plant Science, May 2015
DOI 10.3389/fpls.2015.00293
Pubmed ID
Authors

Yan Wang, Hong Shen, Liang Xu, Xianwen Zhu, Chao Li, Wei Zhang, Yang Xie, Yiqin Gong, Liwang Liu

Abstract

Lead (Pb), a ubiquitous but highly toxic heavy metal (HM), is harmful to human health through various pathways including by ingestion of contaminated vegetables. Radish is a worldwide root vegetable crop with significant health and nutritional benefits. However, little is known about Pb translocation and distribution within radish plants after its uptake by the roots. In this study, Pb stress was induced using Pb(NO3)2 in hydroponic culture, aiming to characterize the transport, ultrastructural localization, and distribution of chemical forms of Pb in different tissues of radish. The results showed that the majority of Pb (85.76-98.72%) was retained in underground organs including lateral roots, root heads and taproot skins, while a small proportion of Pb was absorbed by root flesh (0.44-1.56%) or transported to the shoot (1.28-14.24%). A large proportion of Pb (74.11-99.30%) was integrated with undissolved Pb oxalate, protein and pectates forming Pb-phosphate complexes. Moreover, a low-Pb-accumulating line of radish showed a higher proportion of Pb in water-soluble form compared with a high-Pb-accumulating line. Subcellular distribution analysis showed that a large proportion of Pb was bound to cell wall fraction in lateral roots (71.08-80.40%) and taproot skin (46.22-77.94%), while the leaves and roots had 28.36-39.37% and 27.35-46.51% of Pb stored in the soluble fraction, respectively. Furthermore, transmission electron microscopy (TEM) revealed Pb precipitates in intercellular space, cell wall, plasma lemma and vacuoles. Fractionation results also showed the accumulation of Pb on the cell wall, intercellular space and vacuole, and low uptake of undissolved Pb oxalate, protein, pectates and Pb-phosphate complexes, which might be due to low transport efficiency and Pb tolerance of radish. These findings would provide insight into molecular mechanism of Pb uptake and translocation in radish and facilitate development of low-Pb-content cultivars in root vegetable crops.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 44 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Brazil 1 2%
Unknown 43 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 18%
Student > Bachelor 5 11%
Student > Doctoral Student 5 11%
Student > Master 4 9%
Professor 3 7%
Other 6 14%
Unknown 13 30%
Readers by discipline Count As %
Agricultural and Biological Sciences 17 39%
Environmental Science 2 5%
Biochemistry, Genetics and Molecular Biology 2 5%
Pharmacology, Toxicology and Pharmaceutical Science 1 2%
Medicine and Dentistry 1 2%
Other 1 2%
Unknown 20 45%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 May 2015.
All research outputs
#20,655,488
of 25,373,627 outputs
Outputs from Frontiers in Plant Science
#16,524
of 24,593 outputs
Outputs of similar age
#206,396
of 279,154 outputs
Outputs of similar age from Frontiers in Plant Science
#195
of 274 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,593 research outputs from this source. They receive a mean Attention Score of 3.9. This one is in the 19th percentile – i.e., 19% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 279,154 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 274 others from the same source and published within six weeks on either side of this one. This one is in the 20th percentile – i.e., 20% of its contemporaries scored the same or lower than it.