↓ Skip to main content

Electron flow from PSII to PSI under high light is controlled by PGR5 but not by PSBS

Overview of attention for article published in Frontiers in Plant Science, July 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
99 Dimensions

Readers on

mendeley
105 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Electron flow from PSII to PSI under high light is controlled by PGR5 but not by PSBS
Published in
Frontiers in Plant Science, July 2015
DOI 10.3389/fpls.2015.00521
Pubmed ID
Authors

Mikko Tikkanen, Sanna Rantala, Eva-Mari Aro

Abstract

Absence of the Proton Gradient Regulation 5 (PGR5) protein from plant chloroplasts prevents the induction of strong trans-thylakoid proton gradient (ΔpH) and consequently also the thermal dissipation of excess energy (NPQ). The absence of the PSBS protein likewise prevents the formation of ΔpH-dependent NPQ. This component of NPQ is called qE, which is nearly exclusively responsible for induction of NPQ upon increase in light intensity. On the other hand, the pgr5 mutant is not only deficient in induction of strong NPQ but it also lacks the capability to oxidize P700 upon increase in light intensity. This, in turn, results from uncontrolled electron flow toward photosystem I (PSI), which has been proposed to be caused by the lack of PSII down-regulation by NPQ and by a poor control of electron flow via the Cytochrome b6f (Cyt b6f) complex. Here we asked whether NPQ really is a component of such regulation of electron flow from PSII to PSI at high light. To this end, the two NPQ mutants pgr5 and npq4, the latter lacking the PSBS protein, were characterized. It is shown that the npq4 mutant, despite its highly reduced Plastoquinone pool, does not inhibit but rather enhances the oxidation of P700 in high light as compared to wild type. This clearly demonstrates that the control of electron flow from PSII to PSI cannot be assigned, even partially, to the down-regulation of PSII by NPQ but apparently takes place solely in Cyt b6f. Moreover, it is shown that the pgr5 mutant can induce NPQ in very high light, but still remains deficient in P700 oxidation. These results challenge the suggestion that NPQ, induced by PGR5-dependent cyclic electron transfer, would have a key role in regulation of electron transfer from PSII to PSI. Instead, the results presented here are in line with our recent suggestion that both PSII and PSI function under the same light harvesting machinery regulated by ΔpH and the PSBS protein (Tikkanen and Aro, 2014; Grieco et al., 2015).

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 105 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Singapore 1 <1%
Unknown 104 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 19 18%
Student > Master 18 17%
Researcher 17 16%
Student > Doctoral Student 8 8%
Professor > Associate Professor 6 6%
Other 14 13%
Unknown 23 22%
Readers by discipline Count As %
Agricultural and Biological Sciences 40 38%
Biochemistry, Genetics and Molecular Biology 31 30%
Environmental Science 2 2%
Chemistry 2 2%
Medicine and Dentistry 1 <1%
Other 1 <1%
Unknown 28 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 July 2015.
All research outputs
#20,282,766
of 22,816,807 outputs
Outputs from Frontiers in Plant Science
#16,009
of 20,110 outputs
Outputs of similar age
#218,971
of 262,361 outputs
Outputs of similar age from Frontiers in Plant Science
#211
of 267 outputs
Altmetric has tracked 22,816,807 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,110 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 262,361 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 267 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.