↓ Skip to main content

In silico study for diversing the molecular pathway of pigment formation: an alternative to manual coloring in cotton fibers

Overview of attention for article published in Frontiers in Plant Science, September 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
13 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
In silico study for diversing the molecular pathway of pigment formation: an alternative to manual coloring in cotton fibers
Published in
Frontiers in Plant Science, September 2015
DOI 10.3389/fpls.2015.00751
Pubmed ID
Authors

Ammara Ahad, Aftab Ahmad, Salah ud Din, Abdul Q. Rao, Ahmad A. Shahid, Tayyab Husnain

Abstract

Diversity of colors in flowers and fruits is largely due to anthocyanin pigments. The flavonoid/anthocyanin pathway has been most extensively studied. Dihydroflavonol 4-reductase (DFR) is a vital enzyme of the flavonoid pathway which displays major impact on the formation of anthocyanins, flavan 3-ols and flavonols. The substrate specificity of the DFR was found to play a crucial role in determination of type of anthocyanidins. Altering the flavonoid/anthocyanin pathway through genetic engineering to develop color of our own choice is an exciting subject of future research. In the present study, comparison among four DFR genes (Gossypium hirsutum, Iris × hollandica, Ang. DFRI and DFRII), sequence alignment for homology as well as protein modeling and docking is demonstrated. Estimation of catalytic sites, prediction of substrate preference and protein docking were the key features of this article. For specific substrate uptake, a proline rich region and positions 12 plus 26 along with other positions emphasizing the 26-amino acid residue region (132-157) was tested. Results showed that proline rich region position 12, 26, and 132-157 plays an important role in selective attachment of DFRs with respective substrates. Further, "Expasy ProtParam tool" results showed that Iris × hollandica DFR amino acids (Asn 9: Asp 23) are favorable for reducing DHQ and DHM thus accumulating delphinidin, while Gossypium hirsutum DFR has (Asn 13: Asp 21) hypothesized to consume DHK. Protein docking data showed that amino acid residues in above mentioned positions were just involved in attachment of DFR with substrate and had no role in specific substrate uptake. Advanced bioinformatics analysis has revealed that all above mentioned positions have role in substrate attachment. For substrate specificity, other residues region is involved. It will help in color manipulations in different plant species.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 13 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 13 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 38%
Student > Doctoral Student 1 8%
Student > Bachelor 1 8%
Student > Master 1 8%
Researcher 1 8%
Other 1 8%
Unknown 3 23%
Readers by discipline Count As %
Agricultural and Biological Sciences 6 46%
Biochemistry, Genetics and Molecular Biology 1 8%
Psychology 1 8%
Earth and Planetary Sciences 1 8%
Chemistry 1 8%
Other 0 0%
Unknown 3 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 September 2015.
All research outputs
#20,291,881
of 22,828,180 outputs
Outputs from Frontiers in Plant Science
#16,033
of 20,139 outputs
Outputs of similar age
#228,664
of 272,396 outputs
Outputs of similar age from Frontiers in Plant Science
#248
of 345 outputs
Altmetric has tracked 22,828,180 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,139 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 272,396 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 345 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.