↓ Skip to main content

Overexpression of OsDof12 affects plant architecture in rice (Oryza sativa L.)

Overview of attention for article published in Frontiers in Plant Science, October 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (52nd percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
36 Dimensions

Readers on

mendeley
43 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Overexpression of OsDof12 affects plant architecture in rice (Oryza sativa L.)
Published in
Frontiers in Plant Science, October 2015
DOI 10.3389/fpls.2015.00833
Pubmed ID
Authors

Qi Wu, Dayong Li, Dejun Li, Xue Liu, Xianfeng Zhao, Xiaobing Li, Shigui Li, Lihuang Zhu

Abstract

Dof (DNA binding with one finger) proteins, a class of plant-specific transcription factors, are involved in plant growth and developmental processes and stress responses. However, their biological functions remain to be elucidated, especially in rice (Oryza sativa L.). Previously, we have reported that OsDof12 can promote rice flowering under long-day conditions. Here, we further investigated the other important agronomical traits of the transgenic plants overexpressing OsDof12 and found that overexpressing OsDof12 could lead to reduced plant height, erected leaf, shortened leaf blade, and smaller panicle resulted from decreased primary and secondary branches number. These results implied that OsDof12 is involved in rice plant architecture formation. Furthermore, we performed a series of Brassinosteroid (BR)-responsive tests and found that overexpression of OsDof12 could also result in BR hyposensitivity. Of note, in WT plants the expression of OsDof12 was found up-regulated by BR treatment while in OsDof12 overexpression plants two positive BR signaling regulators, OsBRI1 and OsBZR1, were significantly down-regulated, indicating that OsDof12 may act as a negative BR regulator in rice. Taken together, our results suggested that overexpression of OsDof12 could lead to altered plant architecture by suppressing BR signaling. Thus, OsDof12 might be used as a new potential genetic regulator for future rice molecular breeding.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 43 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Brazil 1 2%
Unknown 42 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 16%
Researcher 4 9%
Student > Bachelor 4 9%
Professor > Associate Professor 3 7%
Student > Doctoral Student 2 5%
Other 7 16%
Unknown 16 37%
Readers by discipline Count As %
Agricultural and Biological Sciences 21 49%
Biochemistry, Genetics and Molecular Biology 4 9%
Medicine and Dentistry 1 2%
Unknown 17 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 October 2015.
All research outputs
#15,297,057
of 22,829,683 outputs
Outputs from Frontiers in Plant Science
#10,600
of 20,146 outputs
Outputs of similar age
#162,195
of 278,190 outputs
Outputs of similar age from Frontiers in Plant Science
#167
of 363 outputs
Altmetric has tracked 22,829,683 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,146 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 46th percentile – i.e., 46% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 278,190 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 363 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.